PART II

PRICE-BASED RM



Chapter 5

DYNAMIC PRICING

5.1 Introduction and Overview

In this chapter, we look at settings in which prices rather than quan-
tity controls are the primary variables used to manage demand. While
the distinction between quantity and price controls is not always sharp
(for instance, closing the availability of a discount class can be consid-
ered equivalent to raising the product’s price to that of the next highest
class), the techniques we look at here are distinguished by their explicit
use of price as the control variable and their explicit modeling of demand
as a price-dependent process.

In terms of business practice, varying prices is often the most nat-
ural mechanism for revenue management. In most retail and industrial
trades, firms use various forms of dynamic pricing—including personal-
ized pricing, markdowns, display and trade promotions, coupons, dis-
counts, clearance sales, and auctions and price negotiations (request for
proposals and request for quotes—RFP/RFQ processes)—to respond to
market fluctuations and uncertainty in demand. Exactly how to make
such price adjustments in a way that maximizes revenues (or profits, in
the case where variable costs are involved) is the subject of this chapter.

Dynamic pricing is as old as commerce itself. Firms and individu-
als have always resorted to price adjustments (such as haggling at the
bazaar) in an effort to sell their goods at a price that is as high as possi-
ble yet acceptable to customers. However, the last decade has witnessed
an increased application of scientific methods and software systems for
dynamic pricing, both in the estimation of demand functions and the
optimization of pricing decisions.
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5.1.1 Price versus Quantity-Based RM

Some industries use price-based RM (retailing), whereas others use
quantity-based RM (airlines). Even in the same industry, firms may use
a mixture of price- and quantity-based RM. For instance, many of the
RM practices of the new low-cost airlines more closely resemble dynamic
pricing than the quantity-based RM of the traditional carriers. What
explains these differences?

It is hard to give a definitive answer, and indeed Chapter 8 is devoted
to different theoretical explanations of RM practice. But in essence,
it boils down to a question of the extent to which a firm is able to
vary quantity or price in response to changes in market conditions. This
ability, in turn, is determined by the commitments a firm makes (to price
or quantity), its level of flexibility in supplying products or services, and
the costs of making quantity or price changes.

Consider airlines, for example. While arguably less true today than
in the past, airlines normally commit to prices for their various fare
products in advance of taking bookings. This is due to advertising con-
straints (such as the desire to publish fares in print media and fare
tariff books), distribution constraints, and a desire to simplify the task
of managing prices. For these marketing and administrative reasons,
most airlines advertise and price fare products on an aggregate origin-
destination market level, for a number of flights over a given interval of
time, and do not price on a departure-by-departure basis. This limits
their ability to use price to manage the demand on any given departure,
demand that varies considerably by flight and is quite uncertain at the
time of the price posting. At the same time, the supply of the various
classes is almost perfectly flexible between the products (subject to the
capacity constraint of the flight), since all fare products sold in the same
cabin of service share a homogeneous seat capacity. It is this combina-
tion of price commitments together with flexibility on the supply side
that make quantity-based RM an attractive tactic in the airline industry.
Hotels, cruise ships, and rental cars—other common quantity-based RM
industries—share many of these same attributes.

In other cases, however, firms have more price flexibility than quantity
flexibility. In apparel retailing, for example, firms commit to order quan-
tities well in advance of a sales season—and may even commit to certain
stocking levels in each store. Often, it is impossible (or very costly) to
reorder stock or reallocate inventory from one store to another. At the
same time, it is easier (though not costless) for most retailers to change
prices, as this may require only changing signage and making data en-
tries into a point-of-sale system. Online retailers in particular enjoy
tremendous price flexibility because changing prices is almost costless.
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Business-to-business sales are often conducted through a RFP/RFQ
process, which allows firms to determine prices on a transaction-by-
transaction basis. In all these situations, price-based RM is therefore
a more natural practice. Of course, the context could dictate a different
choice even in these industries. For example, if a retailer commits to
advertised prices in different regional markets yet retains a centralized
stock of products, it might then choose to manage demand by tactically
allocating its supply to these different regions—a quantity-based RM
approach.

However, given the choice between price- and quantity-based RM, one
can argue that price-based RM is the preferred option. The argument
is as follows (see Gallego and van Ryzin [199]). Quantity-based RM
operates by rationing the quantity sold to different products or to differ-
ent segments of customers. But rationing, by its very nature, involves
reducing sales by limiting supply. If one has price flexibility, however,
rather than reducing sales by [limiting supply, we can reduce sales by
increasing price. This achieves the same quantity-reducing function as
rationing, but does it more profitably because by increasing price we
both reduce sales and increase revenue at the same time. In short,
price-based “rationing” is simply a more profitable way to limit sales
than quantity-based rationing.

In practice, of course, firms rarely have the luxury of choosing price
and quantity flexibility. Therefore, practical business constraints dictate
which tactical response—price- or quantity-based RM (or a mixture of
both)—is most appropriate in any given business context.

5.1.2 Industry Overview

To give a sense of the scope of activity in the area of dynamic pricing,
we next review pricing innovations in a few industries.

5.1.2.1 Retailing

Retailers, especially in apparel and other seasonal-goods sectors, have
been at the forefront in deploying science-based software for pricing,
driven primarily by the importance of pricing decisions to retailers’ prof-
its. For example, Kmart alone wrote off $400 million due to markdowns
in one quarter of 2001, resulting in a 40% decline in its net income [194].

Several software firms specializing in RM in retailing have recently
emerged. Most of this software is currently oriented toward optimizing
markdown decisions. Demand models fit to historical point-of-sale data
together with data on available inventory serve as inputs to optimiza-
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tion models that recommend the timing and magnitude of markdown
decisions.

Major retailers—including Gymboree, J. C. Penney, L. L. Bean, Liz
Claiborne, Safeway, ShopKo, and Walgreen’s—are experimenting with
this new generation of software [194, 214, 270, 379]. Many have re-
ported significant improvements in revenue from using pricing models
and software. For example, ShopKo reported a 24% improvement in
gross margins as a result of using its model-based pricing software [270]
and other retailers report gains in gross margins of 5% to 15% [194].
Academic studies based on retail data have also documented significant
improvements in revenues using model-based markdown recommenda-
tions [70, 247].

5.1.2.2 Manufacturing

Scientific approaches to pricing are gaining acceptance in the manu-
facturing sector as well. For example, Ford Motor Co. reported a high-
profile implementation of pricing-software technology to support pricing
and discounts for its products [135]. The project, started in 1995, fo-
cused on identifying features that customers were most willing to pay
for and changing salesforce incentives to focus on profit margins rather
than unit-sale volumes. Ford then applied pricing models developed by
an outside consulting firm to optimize prices and dealer and customer
incentives across its various product lines. In 1998, Ford reported that
the first five U.S. sales regions using this new pricing approach collec-
tively beat their profit targets by $1 billion, while the 13 that used their
old methods fell short of their targets by about $250 million [135].

5.1.2.3 E-business

E-commerce has also had a strong influence on the practice of pric-
ing [529]. Companies such as eBay and Priceline have demonstrated the
viability of using innovative pricing mechanisms that leverage the ca-
pabilities of the Internet. E-tailers can discount and markdown on the
fly based on customer loyalty and click-stream behavior. Since a large
e-tailer like Amazon.com has to make a large number of such pricing
decisions based on real-time information, automating decision making
is a natural priority. The success of these e-commerce companies—
inconsistent and volatile as it may appear at times—is at least partly
responsible for the increased interest among traditional retailers in using
more innovative approaches to pricing.

On the industrial side, e-commerce pricing has been influenced by the
growth of business-to-business (B2B) exchanges and other innovations
in using the Internet to gain trading efficiencies. While this sector too
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has had its ebbs and flows, it has produced an astounding variety of new
pricing and trading mechanisms, some of which are use regularly for
the sale products such as raw materials, generic commodity items and
excess inventory. For example, Freemarkets has had significant success
in providing software and service for industrial-procurement auctions,
and as of this writing claims to have facilitated over $30 billion in trade
since its founding in 1999. Covisint—an exchange jointly funded by
Daimler-Chrysler, Ford Motor Company, and General Motors—while
slow to develop, looks nevertheless to become a permanent feature of
the auto-industry procurement market. Most infrastructure software for
B2B exchanges—sold by firms such as Ariba, i2, IBM, and Commerce
One—also has various forms of dynamic pricing capabilities built in.

For all these reasons, e-commerce has given price-based RM a signifi-
cant boost in recent years.

5.1.3 Examples of Dynamic Pricing

We next examine three specific example of dynamic pricing and the
qualitative factors driving price changes in each case.

5.1.3.1 Style-Goods Markdown Pricing

Retailers of style and seasonal goods use markdown pricing to clear ex-
cess inventory before the end of the season. This type of price-based RM
is most prevalent in apparel, sporting goods, high-tech, and perishable-
foods retailing. The main incentive for price reductions in such cases is
that goods perish or have low salvage values once the sales season is over;
hence, firms have an incentive to sell inventory while they can, even at
a low price, rather than salvage it.

But apart from inventory considerations, there are other proposed
explanations for markdown pricing. One explanation, proposed by
Lazear [332] (see Examples 8.11 and 8.12) and investigated empirically
in Pashigan [415] and Pashigan and Bowen [414], is that retailers are un-
certain about which products will be popular with customers. Therefore,
firms set high prices for all items initially. Products that are popular
are the ones for which customers have high reservation prices, so these
sell out at the high initial price. The firm then identifies the remaining
items as low-reservation-price products and marks them down. In this
explanation, markdown pricing serves as a form of demand learning.

A second explanation for markdowns is that customers who purchase
early have higher willingness to pay, either because they can use the
product for a full season (a bathing suit at the start of summer) or be-
cause there is some cache to being the first to own it (a new dress style
or electronic gadget). Markdown pricing then serves as a segmenta-
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tion mechanism to separate price-insensitive customers from those price-
sensitive customers willing to defer consumption to get a lower price.

Warner and Birsky [554] give yet another explanation, with empirical
evidence, for markdown pricing. On holidays and during peak-shopping
periods (such as before Christmas), customers can search for the low-
est prices more efficiently because they are actively engaged in search,
making many shopping trips over a concentrated period of time. Even
those customers who normally do not spend much time searching for the
best price change their behavior during these peak shopping periods and
become more vigilant. The result is that demand during peak periods
is more price-sensitive and retailers respond by running ‘“sales” during
these periods.

5.1.3.2 Discount Airline Pricing

Not all dynamic pricing involves price reductions, however. As we
mentioned earlier, discount airlines use primarily price-based RM, but
with prices often going up over time. These airlines (some examples are
easyJet and Ryanair in Europe and JetBlue in the U.S.) typically offer
only one type of ticket on each flight, a non-refundable, one-way fare
without advance-purchase restrictions. However, they offer these tickets
at different prices for different flights, and moreover, during the booking
period for each flight, vary prices dynamically based on capacity and
demand for that specific departure. To quote from one practitioner of
this type of dynamic pricing (Easyjet website, 2003):

The way we structure our fares is based on supply and demand and prices
usually increase as seats are sold on every flight. So, generally speaking, the
earlier you book, the cheaper the fare will be. Sometimes, however, due to
market forces our fares may be reduced further. Our booking system contin-
ually reviews bookings for all future flights and tries to predict how popular
each flight is likely to be.

Figure 5.1 shows the evolution of prices for a particular European
discount airline flight as a function of the number of weeks prior to
departure. Note that prices are highest in the last few weeks prior to
departure.

There are some fundamental differences between air travel and style-
and seasonal-goods products that explain this increasing price pattern.
For one, the value of air travel to customers does not necessarily go down
as the deadline approaches. Conversely, the value of a ticket earlier on
is lower for customers as customers multiply the value by the probabil-
ity that they will indeed use the ticket (especially for a non-refundable
ticket). Somewhat related to these points, additionally, although cus-
tomers purchase tickets at different points of time, all customers consume
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Figure 5.1. Prices a8 a function of weeks prior to departure at a European low-cost
discount air carrier.

the product (fly the flight) at the same time. So two factors come into
play. Customers who purchased early may get upset to see prices drop
while they are still holding a reservation; indeed, many airlines give a
price guarantee to refund the difference if there is a price drop (to en-
courage passengers to book early), making it costly for the firms to lower
prices. And in the travel business, high-valuation high-uncertainty cus-
tomers tend to purchase closer to the time of service. Hence, demand is
less price-sensitive close to the time of service.

5.1.3.3 Consumer-Packaged Goods Promotions

In contrast to markdown and discount airline pricing, promotions are
short-run, temporary price reductions. Promotions are the most com-
mon form of price-based RM in the consumer packaged-goods (CPG)
industry (soap, diapers, coffee, yogurt, and so on).

The fact that customers purchase CPG products repeatedly has im-
portant implications for pricing and promotions. Specifically, customers
are aware of past prices and past promotions, so running promotions too
frequently may condition customers to view the brand as a frequently
discounted product, cutting into brand equity in the long run. Because
customers are aware of past prices, promotions impact their subjective
“reference price”—or sense of the “fair” price—for products. And cus-
tomers may stockpile products, so short-run increases in demand due to
promotions may come at the expense of reduced future demand.
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The institutional structure of promotions is also more complicated.
There are three parties involved—manufacturers, retailers, and end cus-
tomers. Promotions are run either by a manufacturer as discounts to
retailers (trade promotions), which may or may not be passed on to
the customers by the retailers (retailer pass-thru), or by retailers (re-
tail promotions or consumer promotions). In some forms of promotion
(e.g., mail-in coupons) manufacturers gives a discount directly to the
end customer.

The motivations of the manufacturer and the retailer are different as
well. While a manufacturer is interested in increasing sales or profits
for its brand, retailers are interested in overall sales or profits for a cat-
egory constituting multiple brands from multiple manufacturers. For
a retailer, discounting a particular brand may increase sales for that
brand but dilute overall category profits as customers switch from high-
margin brands to the discounted brand. So in designing optimal pro-
motions structures, one has to consider complex incentive compatibility
constraints.

5.1.4 Modeling Dynamic Price-Sensitive Demand

Any dynamic-pricing model requires a model of how demand—either
individual or aggregate—responds to changes in price. The basic theory
of consumer choice and the resulting market-response models are covered
in Chapter 7. We draw on these models in this chapter.

However, in dynamic-pricing problems some additional factors must
be considered. The first concerns how individual customers behave over
time—what factors influence their purchase decisions and how sophisti-
cated their decision-making process is, and so on. The second concerns
the state of market conditions—specifically the level of competition and
the size of the customer population. We next look at each of these
assumptions qualitatively.

5.1.4.1 Myopic- Versus Strategic-Customer Models

One important demand-modeling assumption concerns the level of
sophistication of customers. Most of the models we consider in this
chapter assume myopic customers—those who buy as soon as the offered
price is less than their willingness to pay. Myopic customers do not
adopt complex buying strategies, such as refusing to buy in the hope
of lower prices in the future. They simply buy the first time the price
drops below their willingness to pay. Models that incorporate strategic
customers, in contrast, allow for the fact that customers will optimize
their own purchase behavior in response to the pricing strategies of the
firms.
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Of course, the strategic-customer model is more realistic. However,
such a demand model makes the pricing problem essentially a strate-
gic game between the customers and the firm, and this significantly
complicates the estimation and analysis of optimal pricing strategies—
often making the problem intractable. In contrast, the myopic-customer
model is much more tractable and hence is more widely used. The issue
in practice is really a matter of how “bad” the myopic assumption is in
any given context. In many situations, customers are sufficiently spon-
taneous in making decisions that one can ignore their strategic behavior.
Moreover, customers often do not have the sufficient time or information
to behave very strategically. However, the more expensive and durable
the purchase, the more important it becomes to model strategic cus-
tomer behavior (for example, automobile buyers waiting to purchase at
the end of a model year).

One common defense of the myopic assumption is the following. The
forecasting models that use observations of past customer behavior in
a sense reflects the effects of our customers’ strategic behavior. For
example, if the customers who are most price-sensitive tend to adopt
a strategy of postponing their purchases until end-of-season clearance
sales, then the estimated price sensitivity in these later periods will tend
to appear much higher than in earlier periods. Therefore, even though
we do not model the strategic behavior directly, our forecasting models
indirectly capture the correct price response.

This view is plausible if the pricing strategies obtained from a model
are roughly similar to past policies, so that they can be viewed as “per-
turbations” or “fine tuning” of a historical pricing strategy—a strategy
that customers have already factored into their behavior. On the other
hand, if optimized pricing recommendations are radically different in
structure from past pricing strategies, then it is reasonable to expect
that customers will adjust their buying strategies in response. If this
happens, the predictions of myopic models that are fit to historical data
may be very bad indeed.

Yet even when the myopic approach works (in the sense of correctly
predicting price responses), it runs the risk of reinforcing “bad equilib-
rium” pricing strategies. For example, a myopic model fit to past data
may reconfirm the “optimality” of lowering prices significantly at the
end of a sales season or running periodic holiday sales because it esti-
mates, based on historical data, that demand is especially price-sensitive
in these periods. But this price sensitivity may be due to the fact that
customers have learned not to buy at other times, because they know
prices will be cut at the end of the season or during holidays. If the firm
was to adopt a constant price strategy—and customers were convinced
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that the firm was sticking to this strategy—then the observed price sen-
sitivity might shift. The resulting equilibrium might be more profitable,
but it is one that the firm would not discover using a myopic-customer
model.

Despite these limitations and potential pitfalls of the myopic model,
it is practical, is widely used, and provides useful insight into dynamic
pricing. We therefore focus on the myopic case for the most part in
this chapter. However, we consider strategic customers in Section 5.5.2
below and in considerably more depth in Chapter 6, where we look at
auctions, the analysis of which is entirely based on strategic-customer
models.

5.1.4.2 Infinite- Versus Finite-Population Models

Another important assumption in demand modeling is whether the
population of potential customers is finite or infinite. Of course, in
reality, every population of customers is finite; the question is really a
matter of whether the number and type of customers that have already
bought changes one’s estimate of the number or type of future customers.

In an infinite-population model, we assume that we are sampling with
replacement when observing customers. As a result, the distribution of
the number of customers and the distribution of their willingness to pay
is not affected by the past history of observed demand. This is often
termed the nondurable-goods assumption in economics because we can
view this as a case where customers immediately consume their purchase
and then reenter the population of potential customers (say, for a can of
Coke). This assumption is convenient analytically because one does not
need to retain the history of demand (or a suitable sufficient statistic)
as a state variable in a pricing-optimization problem.

The finite-population model assumes a random process without re-
placement. That is, there are a finite (possibly random) number of cus-
tomers with heterogeneous willingness to pay values. If one of the cus-
tomers in the population purchases, the customer is removed from the
population of potential customers, and therefore future purchases only
occur from the remaining customers. This is termed the durable-goods
assumption in economics because we can consider it as a case where the
good being purchased is consumed over a long period of time (for exam-
ple, an automobile) and hence once a customer purchases, he effectively
removes himself from the population of potential customers.

For example, suppose we assume a price p(t) is offered in period t
and all customers who value the item at more than p(t) purchase in
period ¢t (myopic behavior). Then, under a finite-population model, we
know that after period ¢, the remaining customers all have valuations
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less than p(t). In particular, the future distribution of willingness to
pay is conditioned on the values being less than p(t). As a result, in
formulating a dynamic-pricing problem, we have to keep track of past
pricing decisions and their effect on the residual population of customers.

Which of these models is most appropriate depends on the context.
While often the infinite-population model is used simply because it is
easier to deal with analytically, the key factors in choosing one model
over the other are the number of potential customers relative to the num-
ber that actually buy and the type of good (durable versus nondurable).
Specifically, the infinite-population model is a reasonable approximation
when there is a large population of potential customers and the firm’s
demand represents a relatively small fraction of this population because
in such cases the impact of the firm’s past sales on the number of cus-
tomers and the distribution of their valuations is negligible. It is also
reasonable for consumable goods. However, if the firm’s demand repre-
sents a large fraction of the potential pool of customers or if the product
is a durable good, then past sales will have a more significant impact on
the statistics of future demand, and the finite-population assumption is
more appropriate.

Qualitatively, the two models lead to quite different pricing policies.
Most notably, finite-population models typically lead to price skimming
as an optimal strategy, in which prices are lowered over time in such a
way that high-valuation customers pay higher prices earlier while low-
valuation customers pay lower prices in later periods. Effectively, this
creates a form of second-degree price discrimination, segmenting cus-
tomers with different values for the good and charging differential prices
over time. In infinite-population models, there is no such price-skimming
incentive. Provided the distribution of customer valuations does not shift
over time, the same price that yields a high revenue in one period will
yield a high revenue in later periods, and thus a firm has no incentive
to deviate from this revenue-maximizing price.

5.14.3 Monopoly, Oligopoly, and Perfect-Competition
Models

Another key assumption in dynamic-pricing models concerns the level
of competition the firm faces. Many pricing models used in RM practice
are monopoly models, in which the demand a firm faces is assumed to de-
pend only on its own price and not on the price of its competitors. Thus,
the model does not explicitly consider the competitive reaction to a price
change. Again, one makes this assumption primarily for tractability and
is not always realistic.
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As with the myopic-customer model, the monopoly model can be
partly justified on empirical grounds—namely, that an observed histor-
ical price response has embedded in it the effects of competitors’ re-
sponses to the firm’s pricing strategy. So for instance, if a firm decides
to lower its price, the firm’s competitors might respond by lowering their
prices. With market prices lower, the firm and its competitors see an
increase in demand. The observed increase in demand is then mea-
sured empirically and treated as the “monopoly” demand response to
the firm’s price change in a dynamic-pricing model—even though com-
petitive effects are at work.

Again, while such a view is pragmatic and reflects the conventional
wisdom behind the pricing models used in practice, there are some dan-
gers inherent in it, paralleling those of the myopic-customer model. The
price-sensitivity estimates may prove wrong if the optimized strategy de-
viates significantly from past strategies because then the resulting com-
petitive response may be quite different from the historical response.
Also, the practice runs the risk of reinforcing “bad” equilibrium re-
sponses. Despite these risks, monopoly models have still proved to be
valuable for decision support.

It is worth noting that oligopoly models, in which the equilibrium-
price response of competitors is explicitly modeled and computed, also
have their pitfalls. Most notably, the assumption that firms behave ra-
tionally (or quasi-rationally, if heuristics are used in place of optimal
strategies) may result in a poor predictor of their actual price response.
These potential modeling errors together with the increased complexity
of analyzing oligopoly models—and the difficulty in collecting competi-
tor data to estimate the models accurately—has made them less popular
in practice. Shugan [468] provides a good summary of this point of view;
he notes that “the strong approximating assumption of no competitive
response is sometimes better than the approximating assumption of pre-
existing optimal behavior.” However, properly designed and validated,
oligopoly models can provide valuable insights on issues of pricing strat-
egy.

Finally, one can also consider perfectly competitive models—in which
many competing firms supply an identical commodity. As described in
Section 8.2, the output of each firm is assumed to be small relative the
market size, and this, combined with the fact that each firm is offer-
ing identical commodities, means that a firm cannot influence market
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prices.! Therefore, each firm is essentially a price taker—able to sell as
much as it wants at the prevailing market price but unable to sell any-
thing at higher prices. Despite the importance of perfect-competition
models in economic theory, the assumption that firms have no pricing
power means that the results are not that useful for price-based RM.
Nevertheless, they do play a role in quantity-based RM. For example,
one can interpret the capacity-control models of Chapters 2 and 3 as
stemming from competitive, price-taking models; firms take the price
for their various products as given (set by competitive market forces),
and control only the quantity they supply (the availability or allocation)
at these competitive prices. As our focus in the chapter is on price-
based RM, we do not consider this model of competition further in this
chapter.

5.2  Single-Product Dynamic Pricing Without
Replenishment

The first problem we look at is dynamic pricing of a single product
over a finite sales horizon given a fixed inventory at the start of the
sales horizon. We assume that the firm is a monopolist, customers are
myopic, and there is no replenishment of inventory.

The models are representative of the type used in style and seasonal
goods retail RM. For such retailers, production and ordering cycles are
typically much larger than the sales season, and the main challenge is
to determine the price path of a particular style at a particular store
location, given a fixed set of inventory at the beginning of the season.

At one level, such models are simplistic: they consider only a single
product in isolation and assume customers are myopic, and therefore
demand is a function solely of time and the current price (although
other factors such as inventory depletion are sometimes included). They
therefore ignore competition, the impact of substitution, and the pos-
sible strategic behavior of customers over time. Despite these simpli-
fications, the models provide good rough-cut approximations and are
useful in practice. In addition, by decomposing the problem and treat-
ing products independently, it is possible to solve such models efficiently
even when there are hundreds of thousands of product-location combi-
nations. Finally, even with the simplifying assumptions, the analysis can

!"This is in contrast to the Cournot model of quantity competition discussed in Section 8.4, in
which there are only a small number of firms whose quantity decisions do affect the market
price. Roughly speaking, Cournot competition approaches perfect competition as the number
of firms in the industry tends to infinity.
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still become complex if we allow stochastic demand and put constraints
on prices.

Since we consider only a single product, there is a single (scalar) price
decision at each time ¢, denoted p(t), which induces a unique (scalar)
demand rate d(t,p). The set of allowable prices is denoted €2, and Q4
denotes the set of achievable demand rates. We assume that these func-
tions satisfy the regularity conditions in Assumptions 7.1, 7.2, and 7.3
unless otherwise specified. These include several regularity properties,
which we summarize here:

® The demand functions are continuously differentiable and strictly de-
creasing, d'(¢,p) < 0, on ,. Hence, they have an inverse, denoted

d(t,p).

s The demand functions are bounded above and below and tend to zero
for sufficiently high prices—namely,

inf d(t,p) = 0.
nf (t,p)

» Therevenue functions r(t, p) = pd(t, p) (equivalently r(¢, d) = dp(t, d))
are finite for all p € €, and have a finite maximizer interior to ly,.

» The marginal revenue as a function of demand, d, defined by

I(t,d) = 5or(t,d) = p(tyd) + df (1, ),

is strictly decreasing in d. (Assumption 7.2)

Readers who are not familiar with demand functions are encouraged
to review Section 7.3 for more discussion of these and other related
properties of demand functions. As discussed in Section 7.3, the demand
function can also be expressed as d(t,p) = Ni(1 — F(t,p)), where Ny is
the market-size parameter and F'(t,p) is the fraction of the market with
willingness to pay less than p. We let z(t) denote the inventory at time
t=1,...,T, where T is the number of periods in the sale horizon. The
initial inventory is z(0) = C.

5.2.1 Deterministic Models

The simplest deterministic pricing model is formulated in discrete
time as follows. Given an initial inventory z{0) = C, select a sequence
of prices p(t) (inducing demand rates of d(t,p(t))) that maximize total
revenues. Formulating the problem in terms of the demand rates d(t),
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the optimal rates d*(t) must solve

T

max Zr(t, d(t)) (5.1)

t=1
T
st. Y dt)<C
t=1
d(t) > 0.

Let 7* be the Lagrange multiplier on the inventory constraint, and
recall that J(¢,d) = %r(t,d) denotes the marginal revenue. Then the
first-order necessary conditions for the optimal rates d*(t) and multiplier
T are

J(t’d" (t)) =7, (52)

subject to the complementary slackness condition

T
r(C -3 d* () =0 (5.3)
t=1

and the multiplier nonnegativity constraint 7* > 0. Under Assump-
tion 7.2, J(t,d) is decreasing in d and so 7(t,d) is concave; hence, these
conditions are also sufficient.

The optimality conditions are quite intuitive. The Lagrange multiplier
™ has the interpretation as the marginal opportunity cost of capacity.
The condition J(¢,d*(t)) = #* says that the marginal revenue should
equal the marginal opportunity cost of capacity in each period. This
makes sense because if marginal revenues and costs are not balanced, we
can increase revenues by reallocating sales (by adjusting prices) from a
period of low marginal revenue to a period of higher marginal revenue.
Finally, the complementary slackness condition says that the opportu-
nity cost cannot be positive if there is an excess of stock. If the op-
portunity cost is zero (#* = 0), then if we maximize revenue without
a constraint in every period (pricing to the point where marginal rev-
enue is zero), we will still not exhaust the supply. This means it can be
optimal—even in the absence of any costs for capacity—not to sell all
the available supply.

Note that this problem is essentially equivalent to the problem of opti-
mal third-degree price discrimination (see Section 8.3.3.2) if we consider
customers in each period t to be different segments who are offered dis-
criminatory prices p(t). Another way of viewing the above argument is
that the firm, faced with a capacity constraint, decides how much to sell
in each period, and its optimal allocation of capacity occurs when the
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marginal revenue in all the periods are the same. The following example
illustrates the idea:

Example 5.1 Consider a two-period selling horizon, where during the first period
demand is given by di = —p1 + 100 and in period 2 demand is given by dz = —2pz +
120. (Customers in the second period are more price-sensitive than those in the
first period.) Purchase behavior is assumed to be myopic. Considered separately,
the revenue-maximizing price for the first period (maximizing r1 = pi1(—p1 + 100))
is given by pi = 50 and df = 50, and in the second period by p3 = 30,d; = 60
(maximizing r2 = p2(—2p2 + 120)).

Intertemporal effects come into play if the firm has only a limited number of items
to sell (less than 50+60). Suppose the firm’s capacity is 40. How should it divide the
sale between the two periods?

Note that here, J(1,d1) = —2d1 +100 and J(2,dz) = —d2+60. Consider the table
of marginal values, Table 5.1, at various allocations and the corresponding revenues.
The total revenue is maximized at the point where the marginal values for the two
periods are approximately the same (when di = 27,d2 = 13), conforming to our
intuition; if they were not equal, the firm would reallocate capacity to the higher
marginal-value period.

Table 5.1. Allocations of capacity between periods 1 and 2 and the marginal values
and total revenue.

dy d J(1,d1) J(2,dz) r

22 18 56 42 2634
23 17 54 43 2646.5
24 16 52 44 2656
25 15 50 45 2662.5
26 14 48 46 2666
27 13 46 47 2666.5
28 12 44 48 2664
29 11 42 49 2658.5
30 10 40 50 2650
31 9 38 51 2638.5
32 8 36 52 2624
33 7 34 53 2606.5

To see qualitatively how prices will change over time, we can write
the optimality condition (5.2) as
prit)—m 1
p*(t) le(t, p*)I’
where €(t, p) is the elasticity of demand in period ¢, defined by

_ p_ 0d(t,p)
P = e




Dynamic Pricing 191

See Section 7.3.1.3 for a further discussion of price elasticity. Thus, more
elastic demand in period t implies a lower optimal price p*(t).

For example, if customers that buy toward the end of the sales horizon
are more price-sensitive than those that buy early, then optimal prices
will decline over time. If customers early on are price-sensitive, and those
buying later are less price-sensitive, then optimal prices will increase over
time. This observation offers one explanation for why in some industries
(such as apparel retailing) prices tend to decline over time, while in
others (such as airlines) prices increase over time. Chapter 8 provides
additional explanations for intertemporal price patterns.

5.2.1.1 Computational Approaches

Problem (5.1) is a rather simple nonlinear program to solve. Each
value 7w implies a value d*(t) by (5.2). If the value 7 is too low, these
demand rates will be too high, and the constraint Zz;l d*(t) < C will
be violated. If 7 is too high, total demand will not exhaust supply, and
(5.3) will be violated. Of course, if 7 = 0 results in a total demand that
is less than C, then this is the optimal dual value. Using these rules, it
is straightforward to derive a search procedure to find the optimal 7*.

Another computational approach is to apply a greedy allocation algo-
rithm, based on the observation that the marginal revenues in all periods
are equal at optimality. Specifically, discretize the capacity C into M
units of size § each, so that C = M§. The greedy algorithm then pro-
ceeds by allocating demand in discrete amounts d so as to equalize the
marginal revenue:

STEP 0 (Initialize): Initialize solution d(t) =0,t =1,...,T. Initial-
ize counter k = 0.

STEP 1 (Evaluate marginal revenues): IF max;{J(t,d(t))} > 0,
THEN DO:
Increment the demand of this highest marginal revenue period t*:

d(t*) « d(t*) + 6.
ELSE, IF max{J(t,d(t))} < 0 STOP (Current solution optimal).

STEP 2 (Check capacity constraint and repeat): IF k¥ = M,
STOP;
ELSE k « k+ 1 and GOTO STEP 1.
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This algorithm takes O(M log T) time and is quite simple to program.
Provided the marginal revenue is decreasing in each period, this greedy
procedure produces an optimal (discretized) solution. (See Federgruen
and Groenvelt [182].) The following example illustrates the algorithm:

Example 5.2 Consider a two-period problem with inverse-demand functions
p(1,d1) = 10 — di and p(2,dz) = 10 — 2d2. The corresponding marginal revenue
functions are

J(l,dl) =10- 2d1 a.nd J(2,d2) =10- 4d2.

There are C = 6 units of capacity and we let the increment § = 1. The algorithm then
proceeds as shown in Table 5.2. At the start, both periods have the same marginal
revenue of 10. We break ties arbitrarily by assigning demand to period 1, so we assign
the first unit to period 1. After this assignment, the marginal revenue in period 1
drops to 8 while the marginal revenue in period 2 is still 10, so we assign the next
unit to period 2. The process continues as shown in Table 5.2, assigning units to the
period with highest marginal revenue until all six units are used up. The algorithm
terminates with di = 4 and d3 = 2; all six units are allocated and the marginal
revenues are equalized J(1,dy) = J(2,d3) = 2.

Table 5.2. Example of the marginal-allocation algorithm.

k dy ds J(1,dy) J(2,dz)
0 0 0 10 10

1 1 0 8 10

2 1 1 8 6

3 2 1 6 6

4 3 1 4 6

5 3 2 4 2

6 4 2 2 2
5.2.1.2 Solution in the Time-Homogenous Case

A few additional observations can be made from this model when
demand is time-homogenous, i.e., d(t,p) = d(p) forall t. In this case, the
optimal price p*, given by J(p*) = 7*, is the same in each period. This
shows that prices fluctuate from period to period in the deterministic
model (5.1) only as a result of changes in the demand function over time.

The optimal static price will either be the price that causes the supply
to run out exactly at the end of the horizon (if #* > 0) or the price
at which the unconstrained revenue is maximized (if 7* = 0—that is,
the revenue-maximizing price). Specifically, let p® be defined to be the
value at which marginal revenue is zero, J (po) = 0, called the revenue-
maximizing price. Let p denote the value at which d(p) = C/T, which
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we call the stock-clearing price. Then
p* = max{p’, p},

so the optimal solution reduces to using the maximum of the revenue-
maximizing price and the stock-clearing price. Simply, one cannot do
better than pricing at p® at all times. If Td(p°) < C, this price is feasible
because demand is less than supply. If not, Td(p®) > C, and demand
at p® exceeds supply. We then have to raise the price, and § > p° is the
highest price at which we can still manage to sell all C units.

5.2.1.3 Discrete Prices

Often, in practice, we would like to choose prices from a discrete set.
For example, prices close to convenient whole dollar amounts (such as
$24.99 or $149.99), or fixed percentage markdowns (such as 25% off
or 50% off) are often used because they are familiar to customers and
easy to understand. In such cases, it may be desirable as a matter of
policy to constrain prices to a finite set of k discrete price points, so that
p(t) € Qp, where , = {p1,...,px}. Equivalently, the sales rate d(t) is
constrained to a discrete set d(t) € Qq4(¢) (time-varying in this case if
the demand function is time-varying), where Qq(t) = {d1(¢),...,dr(t)},
and d;(t) = d(t,p;) denotes the sales rate at time ¢ when using the price
Di.

The discreteness of the prices imposes technical complications when
attempting to solve the dynamic pricing problem (5.1) because the prob-
lem is no longer continuous or convex. However, one can overcome this
difficulty by relaxing the problem to allow the use of convex combinations
of the discrete prices (or demand rates). In most periods, the optimal
solution will be to use only one of the discrete prices; in the remaining
periods, the solution has the interpretation of allocating a fraction of
time to each of several prices.

To see this, define a vector of new variables o;(t) for each t, a(t) =
(oa(t),...,ax(t)), which represent convex weights: they are nonnegative
and sum to one. Next, in each period replace the variable d(t) with the
convex combination

k
d(t) =) ai(t)d;(t),
i=1

and replace the constraint d(t) € Q4(t) with the constraint

k
a(t)eWz{ae?Rk:Zai=1,a20}.

i=1
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The optimization problem is then

T k
maXey(t)ew Z Z ri(t)ai(t) (5.4)
P
s.t. > Z a;(t)d;(t) <

a3
Il
—
.
1l
—

where 7;(t) = pid;(t) is the revenue rate at price p;. This is a linear
program in the variables a(t), so it is easy to solve numerically.

To relate the solution to the unconstrained price case, introduce a dual
variable 7* on the capacity constraint as before. The optimal solution
a*(t) in each period is then characterized by solving

a(t)ew {Z a;(t)(ri(t) — m*d; (t))} (5.5)
where 7* > 0 and a*(t) are convex weights satisfying the complementary
slackness condition

(Z Y af - C) = 0. (5.6)

t=11i=1

Since the objective function of (5.5) is linear in a(t), if there is a unique
index * for which 7 (t) — m*d;« (¢) is greatest, then the optimal solution
is simply a;+(t) = 1, which corresponds to using the discrete price p;. If
there is more than one such value ¢*, then there will be multiple solutions
to (5.5), and determining which is optimal can be resolved by appealing
to the complementary slackness condition (5.6). Of course, such a choice
could result in a fractional solution in which «;(t) > 0 for two or more
values <. However, this can be interpreted as saying that we should use
the price ¢ for a fraction a;(t) of period ¢t. Hence, the solution of (5.4)
can be converted in practice into a discrete-price recommendation. The
following example illustrates the calculation.

Example 5.3 Consider a two week selling season in which there is a linear-demand
function d(1,p) = 100 — p in week 1 and a demand function d(2,p) = 100 — 1.4p in
week 2. The firm is constrained to offer prices in the set {40, 50, 70}. The demand and
revenues are then given in Table 5.3. Solving the linear program (5.4) for different
value of the initial inventory C, we obtain the results in Table 5.4. For example, with
an initial inventory of 50, the solution has a7o(1) and as0(2) = 0.64 and aro(2) = 0.36.
This corresponds to pricing at $70 for all of week 1 and 36% of week 2 then lowering
the price to $50 for the remainder of week 2. Similarly, when the initial inventory is
70, the solution calls for pricing at $70 for half of week 1 and then lowering the price
to $50 for the remainder of the selling season. At very high levels of inventory (110
and 120), it is optimal to charge a price of $50 in week 1 and a price of $40 in week 2.
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Table 5.8. Example of discrete prices and revenues.

p d(1,p) r(1,p) d(2,p) r(2,p)
20 60 2,400 44 1,760

30 50 2,500 30 1,500

50 30 2,100 2 140

Table 5.4. Solution of a linear program for the discrete-price example.

Inv. (C) auo(l) aso(l) az(l) @w0(2) as0(2) an(2) Total Sold

50 0.00 0.00 1.00 0.00 0.64 0.36 50
60 0.00 0.00 1.00 0.00 1.00 0.00 60
70 0.00 0.50 0.50 0.00 1.00 0.00 70
80 0.00 1.00 0.00 0.00 1.00 0.00 80
90 0.00 1.00 0.00 0.71 0.29 0.00 90
100 0.00 1.00 0.00 1.00 0.00 0.00 94
110 0.00 1.00 0.00 1.00 0.00 0.00 94
120 0.00 1.00 0.00 1.00 0.00 0.00 94

5.2.14 Maximum Concave Envelope

In the discrete-price problem, certain discrete prices may never be
optimal to use and can in fact be eliminated from the problem. Indeed,
suppose that for a give price p; there exist convex weights a;(t) such
that

ai(t)ri(t)y > r4(t) (5.7)

a(t)dit) < di(t).

i M:r I M?r

Then the price p; is never optimal at time ¢. Intuitively, this follows since
a convex combination of other prices produces strictly higher revenue yet
consumes no more capacity than using p;. This is in fact the same no-
tion of efficiency described in Section 2.6.2 for the discrete-choice model
of demand in the single-resource capacity-control problem. All such in-
efficient prices j can be eliminated from consideration at time f. The
remaining efficient prices define the maximum concave envelope of the
pairs of values {(d;(t),r:(t)) : ¢ =1,...,k} as shown in Figure 5.2.

5.2.1.5 Inventory-Depletion Effect

Another practical factor affecting dynamic pricing in many retailing
contexts is the adverse effects of low inventory levels. This is sometimes
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Figure 5.2. The maximum concave envelope produced by discrete prices (scatter plot
of pairs (ri(t), di(t)): efficient points are shaded).

referred to in retailing as a broken-assortment effect. For example, if the
inventory-pricing model is applied at an aggregate item level, where an
item contains several SKUs—such as color-size combinations in apparel
retailing—then when inventories run low, certain SKUs may be out of
stock even though there is a positive inventory for the item as a whole
(for example, if a color or size runs out). The resulting reduction in
alternatives naturally reduces the sales rate at any given price. Indeed,
empirical studies have confirmed a positive correlation between inventory
levels and sales rates [65].

These inventory-depletion effects can be modeled by making the de-
mand rate a function of inventory as well as of price and time, so that
the demand rate becomes d(¢,p(t),z(t)). We can use a variety of func-
tional forms to represent this inventory-depletion effect. For example,
one proposed model is the following multiplicative form [480]:

d(t, z(t)) = d(t)g(=(t)), (5.8)
where g(-) is a depletion-effect term. We will call d(t) the unadjusted
sales rate (the rate of sales if inventory were unlimited) and cf(t,a:(t))
the adjusted sales rate (the rate adjusted for inventory-depletion effects).
One choice for g is

9(z) =1—~ymax{0,1 - z/z0},

where Zo is the minimum full-fixture inventory and 0 < v < 1 is a
sensitivity parameter. Both zg and v can be estimated from historical
data. Note that g(z) is concave in z.
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Another possible form is

g(z) — e—'ymax{O,l—z/:co},
where ¥ and zg have the same interpretation (see Smith and Achabal
[480]).

For this model with inventory depletion one must keep track of the
inventory at each time ¢ in the optimization problem. For example,
assuming the multiplicative inventory-depletion model of (5.8) and for-
mulating the problem in terms of the unadjusted sales rate d(t), the
inventory evolves according to the state equation

z(t + 1) = z(t) — d(t)g(=(t)),
and the revenue-maximization problem can be formulated as

T

maxgpo Y (¢ d(t))g(z(t)) (5.9)
t=1
s.t. z(t+1) = z(t) - d(t)g(z(t)), t=1,....,T
z(T) > 0,
z(0) = C,

where 7(t,d(t)) = p(t,d(t))d(t) is the unadjusted revenue-rate function.

While somewhat more complex than the case without inventory-
depletions effects, this is still a relatively simple nonlinear program to
solve because the objective function is separable and the constraints
are linear. (The objective function, however, is not necessarily jointly
concave even if r(¢,d(¢t)) and g(z) are both concave.)

One qualitative impact of this inventory-depletion phenomenon is
that optimal prices may decline over time even though the unadjusted
revenue-rate function is time-invariant. (Recall that in the problem
without inventory-depletion effects, a time-invariant revenue-rate func-
tion implied a time-invariant optimal price.) For example, Smith and
Achabal [480] show, for the continuous-time version of this model, that
if the unadjusted revenue-rate function is constant and the inventory-
depletion effect is multiplicative, then optimal prices decline over time
in such a way that the adjusted sales rate g(x(t))d(t) is constant; that is,
as inventory depletion reduces demand, the optimal prices fall to exactly
compensate for the drop in sales due to inventory depletion.

5.2.1.6 A Retail Markdown Application

Here we look at the study of Heching et al. [247] that applied deter-
ministic pricing models of the sort discussed above to analyze markdown
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Figure 5.3. Sales volume for spring 1993: actual and planned.

pricing at an apparel retailer. The study provides an example of how
such models can be applied and gives an indication of their potential
impact.

The firm studied by Heching et al. [247] was a women’s specialty
apparel retailer with approximately 50 stores in the United States. The
firm sold primarily its own private-label products and generally stocked
items once at the beginning of the season. It then used markdowns to
clear slow-selling merchandize.

The data set included the majority of the firm’s sales over the spring
1993 season, spanning 184 styles in 25 groups (a collection of related
styles). Weekly sales were obtained for each style sold during this period.
Of all the styles in the data set, the firm took markdowns on 60 (the
markdown styles). The remaining 124 styles had no price changes. While
representing only one-third of all styles, markdown styles accounted for
42% of gross sales revenue.

There were strong seasonalities in sales due to major holidays and
traditional shopping seasons as shown in Figure 5.3. Total weekly sales
ranged from roughly 70% of average in slow weeks to 130% of average
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in the strongest weeks. The data also indicated that demand was in-
deed price-sensitive. After adjusting for seasonalities, the conditional
probability of a sales increase, given a markdown, was 85%, while the
unconditional probability of an increase was only 38%.

Sales of nearly all styles also tended to decline over time. Figure 5.4(i)
plots weekly sales for one style that maintained the same price over its
entire 12-week selling season. The weekly sales figures have been ad-
justed to eliminate any seasonality that can be attributed to traditional
shopping seasons. Figure 5.4(ii) plots weekly sales for one of the mark-
down styles. A 28.6% markdown was implemented in week 6. The graph
indicates a decline in sales over the weeks prior to the price change, as
well as a decline in sales after the markdown price is implemented. Ex-
planations for this declining-sales phenomenon include saturation of the
customer base, loss of customers to competitors, a decline in the per-
ceived value of an item as the selling season progresses and depletion of
inventories of individual stock-keeping units.

The following demand model was used to model these features,

d(t,p) = we(a + bp)e %),

where w; is a seasonality factor, a is an age factor, and a and b are
demand-function parameters. The seasonality factor was estimated from
aggregate chainwide data. The age factor was estimated at the group
level, while the demand function coefficients a and b were estimated
using regression at the individual-style level. While there were signifi-
cant errors in the prediction of individual weekly sales using this simple
model, the average error in total revenues at the style level was only
1.2%; the error in the total revenue of all 60 markdown styles was only
0.53%.

The model was then used to estimate the effects of changes in the
firm’s markdown policy on the 60 markdown styles. The firm’s mark-
down policy was compared with the markdowns recommended by a RM
model that combined a simple online forecasting method with a deter-
ministic dynamic-pricing model. Each week the demand function was
reestimated, and an optimal price was computed based on this demand
estimate. The new price was implemented if it was at least 20% lower
than the initial price (a minimum markdown of 20%). The results are
shown in Table 5.5. Note that model-based policy marks down only
33 of the 60 styles and that its average markdown week is much ear-
lier than the firm’s, though the average markdown is approximately the
same. The estimated increase in revenue is 4.8%. This gain is due to
(1) a better selection of which styles to markdown and (2) taking earlier
markdowns on the styles that were marked down.
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Figure 5.4. Effect of markdowns on two sample styles (sales adjusted for seasonality).

Table 5.5. Results of different markdown policies on 60 markdown styles.

Model-Based Policy Firm’s Policy
Number of markdowns 33 60
Average markdown 25.3% 25.8%
Average markdown week 4.3 8.6
Revenue increase 4.8% —

5.2.2 Stochastic Models

Next, we look at the case where the price-sensitive demand is stochas-
tic. We separate the case of continuous-demand models from the case of
Bernoulli (discrete Poisson) demand, though qualitatively the two cases
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are similar. We assume that the stochastic regularity Assumption 7.6
(namely, that the demand has bounded variance) holds throughout.

5.2.2.1 Continuous Demand

Here we assume demand in each period is a continuous random vari-
able D(t,p, &) of the form discussed in Section 7.3.4 with expectation
d(t,p) = E[D(t,p,&)). Capacity is continuous as well. Also, we assume
initially that prices in every period have no constraint other than being
nonnegative.

As in the deterministic case, we assume that the demand function
d(t,p) has an inverse p(t,d). As a result, there is a one-to-one corre-
spondence between prices p and mean demand d in each period, so we
can express the random demand as a function of d. That is, D(¢,d, &) is
the demand in period t where E[D(t,d,&;)] = d. In this way, we can view
the mean demand d as our decision variable. We require the following
convexity assumption on the random demand:

ASSUMPTION 5.1 Forallt, the random demand D(t,d, &) is convex and
increasing in d on the set {d:d >0} for every value &. That is,

D(t) O.‘d] + (1 - a)d21€t) S O.‘D(t, dl)Et) + (1 - a)D(t, d2)€t))
for all d1 2 0,da > 0 and for all 0 < a < 1.

This simply says the demand function is convex in d for each real-
ization of the random-noise term &. (Such a random function is called
strongly stochastically convex; see Appendix B.) Note that both the
additive- and the multiplicative-demand models satisfy this convexity
assumption, as do combinations of the two models.

We also define the following truncated expected revenue function:

r*(t,d,z) = p(t,d) E [min{D(t,d, &), z}] . (5.10)

This is interpreted as follows. Given a remaining capacity = and a price
p(t,d) in period t, then rt(¢,d, z) is the expected revenue received, since
what we sell is the minimum of the demand D(t,d, &) and the capacity
available z. We make the following additional assumption:

ASSUMPTION 5.2 For all t and for every value &, both the inverse-
demand function p(t,d) and the random revenue p(t,d)D(t,d, &) are
concave in d on the set 4(t).

While somewhat restrictive, one can show that this assumption holds
for both the additive- and the multiplicative-demand models provided
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the inverse-demand function p(t,d) and revenue function r(t,d) are con-
cave, which is true, for example, for the linear- and log-linear-demand
functions.

The optimization problem can then be formulated as follows:

Vt(.’l)) = r{llg())(E [p(t’d)E [mln{D(t7da 6t)’z}] + Vt+1(-’17 - D(t) d, 6t))]

max {r*(t,d,z) + Gey1(z,d)}, (5.11)

with boundary conditions are Vpi1(z) = 0 for all z and V;(0) = 0 for all
t, where we define

Gt+l(m,d) = E[‘/t+1 ((L‘ - D(ta d, §t))]'

This function is like the value function, in that it gives the expected
revenue to go in stage ¢ -+ 1 as a function of certain state variables—in
this case, the current inventory x and the demand rate decision d. The
difference is that it replaces the future inventory state z;+1 in the value
function Vy1(ze41) by the two variables that determine z¢4;—namely,
z and d.

The following proposition characterizes the properties of the functions
Vi(z) and Gi(z,d):

PROPOSITION 5.1 If Assumptions 5.1 and 5.2 hold, then for all t,
(i) Gi(z,d) is jointly concave in x and d,

(ii) Vi(z) is concave in z, and

(iii) B%Gt(x, d) is increasing in x and decreasing in d.

This proposition is proved in Appendix 5.A and has important con-
sequences for the optimal pricing policy. First, under Assumption 5.2
r(t,d, z) is concave in d (it is the minimum of two concave functions),
and from Proposition 5.1(1) we know that G4 is concave in d as well.
Therefore, a necessary and sufficient condition for an optimal d* is ob-
tained by differentiating the term inside the maximization in the dy-
namic program (5.11) and setting the result to zero, which yields

b%r-‘-(t’ d, :L') = —%Gt+1(ma d*)

By Proposition 5.1(iii), the right-hand side above is decreasing in z, and
since z%r*‘(t,d, z) is decreasing in d, this means that higher inventory
levels  imply a higher optimal sales rate d*—and consequently a lower
optimal price p*—in any period ¢. That higher inventories lead to lower
optimal prices is certainly intuitive.



Dynamic Pricing 203

5.2.2.2 Bernoulli Demand

If the random demand is Bernoulli (discrete Poisson), then a different
analysis is required. Here we assume there is only one customer per
period and the customer in period ¢ has a willingness to pay wvg; that
is, a random variable with distribution F(t,v) = P(v; < v). Therefore,
if the firm offers a price of p in period t, it will sell exactly one unit if
ve > p (with probability 1 — F(t,p)). Letting d(¢,p) = 1 — F(t,p) denote
the (average) demand rate, we can define an inverse-demand function,
p(t,d) = F;1(1 — d(t)) and revenue-rate function, r(t,d) = dp(t,d), as
before. The inventory and demand in this case are both assumed to be
discrete.

Letting Vi(x) denote the optimal expected revenue to go, the problem
can be formulated in terms of demand rates d(t) using the Bellman
equation:

Vi(z) = max {d(p(t,d) + Vira(z — 1)) + (1 — d) Vi (2)}
mex {r(t,d) — dAVi41(2)} + Vey1(z) (5.12)

with boundary conditions Vpi1(x) = 0 for all z and V;(0) = 0 for all
t, where AVi(z) = Vi(z) — Vi(xz — 1) is the expected marginal value
of capacity. Under the monotonicity Assumption 7.2 and assuming an
interior solution, necessary and sufficient conditions for the optimal rate
d* are

J(¢,d%) = AViqa (=), (5.13)
which again, as in the deterministic case of equation (5.2), has the in-
terpretation that we set the marginal revenue equal to the marginal
opportunity cost in every period . One can show

PROPOSITION 5.2 If Assumption 7.2 holds, then the expected marginal
value of capacity, AVy(z), of the dynamic program (5.12) is decreasing
int and x—that is, Vz,t

(i) AViya(z) < AVi(z) and (ii) AVi(z +1) < AVy(a).

Again, this monotonicity has intuitive implications for the optimal
price. Consider, for simplicity, the case where the marginal revenue is
not time dependent, so J(t,d) = ?%%@ = J(d). Note that (5.13) and
Assumption 7.2 (that J(d) is decreasing) together imply that higher
marginal values correspond to lower optimal-demand rates—and hence
higher optimal prices. Thus, Proposition 5.2(i) above says that with
more time remaining, the marginal value of capacity increases and there-
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Figure 5.5. An example of the optimal price path in the stochastic case (25 units;
exponential demand: ¢ = —1.1, b = 1).

fore the optimal price increases as well.> Conversely, if time elapses with-
out any sales taking place, the optimal price will fall. Proposition 5.2(ii)
says the opposite is true of capacity; the more capacity remaining at any
given point in time, the lower the optimal price. A numerical example
illustrates this behavior:

Example 5.4 Consider a problem with 7 = 333 time-periods, an initial inventory of
C = 25 units, and a time-homogeneous, exponential-demand function d(t, p) = ae~%"
in each period t with parameters @ = 1.1 and b = 1. A sample of the optimal-price
path is shown in Figure 5.5. The time axis is normalized to one and represents the
fraction of total time remaining. The points at which the price jumps correspond to
sales; each sale results in a step increase in price. As time elapses without any sales
taking place, prices decline. This is exactly the behavior implied by Proposition 5.2.

5.2.2.3 Comparing the Deterministic and Stochastic
Models

One fact that is useful theoretically and computationally is that the
deterministic model (5.1) provides an upper bound on the expected rev-
enue from the stochastic model (5.11). This can be shown in a variety of
ways. For example, by relaxing the capacity constraint in the stochastic

Note this behavior does not necessarily hold if the marginal revenue varies with time, since
in such cases whether the condition J(t,d*) = AVi4q(x) results in d* rising or falling over
time for a fixed ¢ depends on how both J(t,d) and AV;+1(x) vary with time.
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problem with a multiplier # > 0, we can form the relaxed problem

T T
max B |3 D(t,d(t), &)p(t d(®) +7(C = 3 Di(d®))|,  (5.14)
t=1 t=1

where the random variable Dy(d(t)) = 1 if there is an arrival in period
t using the control d(t), and Dy(d(t)) = 0 otherwise. Note an opti-
mal policy for the original stochastic problem (5.11) satisfies z(G) >
YT Di(d(t)) (as.); therefore, since w > 0 if we evaluate the objective
function of (5.14) for such an optimal policy, it will give an upper bound
on the optimal expected revenue for the original problem (5.11). Hence,
maximizing (5.14) over all d(t) certainly provides an upper bound as
well. However, this function is separable in time ¢, so we can choose the
control in each period to maximize E[Dy(d(t))(p(t,d(t)) — m)] at each
time t. Since E[D¢(d(t))] = d(t), (5.14) is equivalent to maximizing

T
Y (s, d(t)) — md(t)] + C.
t=1

This is solved as in the deterministic case by setting the marginal rev-
enue J(t,d) = m in each period t. Since this upper bound is valid for
any ® > 0, we can take m = 7*, the optimal dual price in the deter-
ministic problem. This results in d(t) = d*(t), the optimal solution of
the deterministic problem. Moreover, by the complementary slackness
condition (5.3), the optimal dual price satisfies 7*(C — Y2y d*(t)) = 0,
so the bound (5.14) becomes

T
> d (@®)p(t, d* (1)),
t=1

which is exactly the optimal deterministic revenue. Hence, the opti-
mal deterministic revenue is an upper bound on the optimal expected
stochastic revenue.

It’s also possible to show that the solution produced by the deter-
ministic dynamic-pricing problem is a reasonably good heuristic for the
stochastic-pricing problem. Numerically, it performs well, and theoret-
ically it can be shown to be asymptotically optimal for problems with
large demand volumes (such as a large number of time-periods) and
large initial inventories (see Gallego and van Ryzin [198]). Such proper-
ties provide support for using deterministic models as an approximation.
The following example illustrates the deterministic approximation:

Example 5.5 Consider a variation of Example 5.4, where we have T = 333 periods
and a time-homogenous exponential demand function d(¢, p) = ae~% with parameters
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a =1 and b = 2.718. Since the demand function is not time varying, the optimal
deterministic price is constant. We denote this p”#7. The unconstrained revenue-
maximizing priceis p° = 1. Starting inventories C range from 1 to 20. Table 5.6
shows the prices and resulting revenues for this problem. As Table 5.6 shows, the

Table 5.6. Example performance of the deterministic-price heuristic.

DET
c P25 Vr(C) Ao
1 3.30 2.40 0.871
2 2.61 4.11 0.926
3 2.20 5.43 0.945
4 1.92 6.47 0.954
5 1.69 7.30 0.956
6 1.51 7.96 0.956
7 1.35 8.49 0.952
8 1.22 8.89 0.946
9 1.11 9.22 0.937
10 1.00 9.46 0.925
11 1.00 9.64 0.951
12 1.00 9.77 0.970
13 1.00 9.85 0.982
14 1.00 9.91 0.990
15 1.00 9.95 0.995
16 1.00 9.97 0.997
17 1.00 9.99 0.999
18 1.00 9.99 0.999
19 1.00 10.00 1.000
20 1.00 10.00 1.000

relative performance of the deterministic heuristic is poorest at C = 1 (13% below
the optimal revenue) and C = 10 (7.5% below the optimal revenue) but otherwise
performs reasonably well, especially in the very unconstrained case of initial inventory
approaching 20. Note that T'd(p°) = 10, so C = 10 is the boundary between the
constrained and unconstrained regions of the deterministic problem (the constrained
region is where the multiplier #* > 0 and the stock-clearing price § is used; the
unconstrained region is where 7* = 0 and the revenue-maximizing price p° isused).

Intuitively, the deterministic prices perform well because they cap-
ture the correct “first-order” effect. That is, they maximize revenue
subject to the constraint that the mean demand is within the capacity
constraint. The stochastic policy does this as well but also adjusts prices
dynamically to respond to fluctuations about the mean demand. In ad-
dition, the stochastic policy has a tendency to price higher earlier in
the sales process (Figure 5.5), which reflects the option value of keeping
initial prices high in the event realized demand is stronger than aver-
age. These two ‘“second-order” adjustments result in the improvement
in revenue exhibited in Table 5.6.
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Hence, there are really two separate benefits to dynamic pricing. The
first is simply to exploit the time-varying price sensitivity of customers;
if the demand function d(t,p) varies with ¢, then even the optimal de-
terministic price will vary with ¢t due to the optimality condition (5.2).
But in addition if demand is stochastic, dynamic pricing helps compen-
sate for random fluctuations in demand and the option value of holding
rather than selling units. This is seen in Figure 5.5, where the optimal
stochastic prices vary despite the fact that the optimal deterministic
prices for this example are constant. In general, both factors will be
present in practical problems, but it is useful to distinguish the different
forces at work in each case.

5.2.24 Prices Constrained to a Discrete Set

Just as in the deterministic case, it may be desirable in practice to
constrain the prices to a finite set, p(t) € Qp, where €, = {p1,...,pk}-
Equivalently, the sales rate d are constrained to a discrete set, d(t) €
Qa(t), where as before, Qq4(t) = {d1(t),...,dk(t)}, di(t) = d(t,p;) de-
notes the sales rate at time ¢ when using the price p;, and 7;(t) = p;d;(t)
denotes the corresponding revenue rate. For simplicity, we consider only
the Bernoulli demand case here (see Section 7.3.4.3).

Computationally, using discrete prices is not a difficult change and in
fact reduces the complexity of the dynamic program (5.12) because the
search at each stage is now reduced to a finite set of prices. As in the
deterministic case, the finite set of prices can be further reduced to only
those prices defining the maximum concave envelope (the efficient prices)
by using the efficiency criteria (5.7). The reasoning is identical to the
deterministic case; inefficient prices produce less expected revenue and
have a higher probability of consuming capacity than done by efficient
prices (or mixtures of efficient prices) and therefore are never an optimal
choice.

Theoretically, the analysis of the discrete problem can again be re-
laxed to put it in a form similar to the unconstrained price case by
allowing the firm to randomize over the discrete set of prices. As in
the deterministic case, define new variables @;(t) that represent convex
weights, and in each period replace the variable d(t) in (5.12) with the
convex combination

k
d(t) =) ailt)di(t)
i=1
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and replace the constraint d(t) € Q4(t) with the constraint

a(t)EWE{a:Zk:ai=1,a20}.

i=1

The dynamic program then becomes

Viw) = mex {Z[n(t Avt+1(x>1al<>}+vt+1<x>

a(t)ew

with the usual boundary conditions Vr4i(z) = 0, Vz and V;(0) = 0 for
all t. In the stochastic case, a fractional solution «(t) can be directly
interpreted as a randomization of the prices in §p = {p1,...,px}. Also,
one can eliminate inefficient prices using the maximum concave envelope
as in the deterministic case.

We can put this in a form similar to (5.12) by noting there is a corre-
spondence between the optimal choice of @(t) and the optimal value of
d(t) = 8, a4(t)d;(t), since for any fixed sales rate d, the optimal cx(t)
that achieves this sales rate must maximize the expected revenue—that
is, it solves the linear program

7(t,d) = max Z a;ri(t
s.t. Z a;di(t) =d
i=1

k

> aidi(t) =1
i=1

o> 0.

The resulting 7#(¢,d) in fact will define the maximum concave envelope
of the fixed set of prices. Hence, the optimization problem can be for-
mulated as

Vi(z) = mgx{r‘(t,d) — dAVi1 ()} + Vg1 (), (5.15)

which has exactly the same form as (5.12) except that the maximum
concave envelope function #(t, d), though continuous and concave, is no
longer differentiable. (Like all objective functions of a maximization lin-
ear program, 7(t,d) is a concave and piecewise linear function of the
right-hand side d.) Thus, the optimality condition (5.13) must be re-

placed by
AVii1(z) € or(t,d"(t)), (5.16)
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where Or(t,d*(t)) denotes the set of subgradients (the subdifferential)
of r(t,d*(t)) at the value d*(t). (See Appendix C for a definition and
discussion of subgradients and nondifferentiable optimization.)

Practically speaking, the above condition implies that the optimal d
will most often be at a corner point of the function #(¢,d) (or there will
be multiple optimal solutions along an interval containing two adjacent
corner points) and we can always find one of the fixed prices that is op-
timal without randomizing. However, by formulating the problem this
way, we preserve the concavity of #(¢,d). Therefore, the structure of the
optimal solution to (5.15) is the same as that of (5.12), and Proposi-
tion 5.1 continues to hold for this case.

5.3  Single-Product Dynamic Pricing with
Replenishment

We next consider situations in which inventory can be replenished
at a cost in each period, as in many production and supply-chain-
management contexts. In such cases, both pricing and inventory de-
cisions need to be made; pricing decisions are used to control demand,
while replenishment decisions are used to control supply. The central
problem is to optimally coordinate these demand and supply decisions.

As in the finite-supply case, we first look at deterministic models of
this problem and then examine stochastic models.

5.3.1 Deterministic Models

We assume a single good with an end-of-period inventory, denoted
z(t), that can be replenished over time. There is a per-unit holding cost
h¢ for inventory in period ¢ and a unit cost for replenishment ¢;. We let
y(t) denote the amount ordered in period t. As in the finite-supply case,
we can formulate the problem in terms of the sales rate d(t), in which
case we let 7(¢,d(t)) and J(t,d) denote, respectively, the revenue rate
and marginal revenue as before. Again, we assume that these functions
satisfy the regularity conditions in Assumptions 7.1, 7.2, and 7.3 unless
otherwise specified.

5.3.1.1 Unconstrained Capacity

We first consider the case where is no capacity constraint on the
amount ordered in each period. The problem can be formulated as
finding a set of rates d*(t) and reorder quantities y*(t) that solve

T
max 3 r(t,d(t)) — hex(t) — cry(t) (5.17)
t=1
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st a(t)=z(t-1)—dE)+y@t), t=1,...,T
d(t),z(t),y(t) 20, t=1,...,T,

where we assume the initial inventory z(0) = 0 for simplicity.
The problem as stated above is not difficult to solve. Indeed, for s < ¢,

define the coefficients 1

Yst = Cs + Z hks
k=s
and note that oy is the cost of satisfying demand in period ¢ with supply
from period s. Let
7*(t) = min{ys},

denote the lowest cost for supplying period ¢, and let s*(¢) denote an
index that achieves the minimum on the right-hand side above.

The optimal sales rate in any period ¢, d*(t), is then determined by
equating the marginal revenue to this lowest marginal cost,

Jt,d' () =@, t=1,...,T.

And the optimal quantity to order in period s is simply determined by
adding up the sales rates from later periods ¢ whose lowest-cost supply
is from period s,

s = 3 d(), s=1,...,T

t:s*(t)=s

An interesting observation for this problem is that even if the demand
functions are time-invariant (r(t,d) = r(d) for all t), the optimal price
can still vary over time due to changes in the cost of supply. In other
words, because the optimality conditions equate marginal revenue to
marginal cost, J(d*(t)) = v*(t), changes in the costs v*(t) over time will
lead to time-varying prices, even though the marginal revenue function
is time-invariant.

5.3.1.2  Capacity Constraints on Ordering

The problem becomes somewhat more complex when there are capac-
ity constraints on the order quantities of the form

y(t)sbta t=1,...,T.

Such constraints, for example, could be due to limited production, trans-
portation, or handling capacity. While (5.17) can be solved as a non-
linear program with these added capacity constraints, there is a simpler
approach. If one discretizes the sales quantities, we can solve the prob-
lem using a greedy algorithm under the assumption that the marginal
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revenue in each period is decreasing. (See Chann, Simchi-Levi, and
Swann [105] for a proof.)

The greedy algorithm proceeds as follows. For a fixed vector of rates
d = (d(1),...,d(T)), define

f(d) =) _r(t,d(t)) - g(d), (5.18)
t=1
where g(d) is the minimum cost for meeting the sales rates d, defined by
fixing d and solving the following optimization problem in the variables
z(t),y(t),t=1,...,T:
T
9(d) = min Z hyx(t) + ciy(t) (5.19)
t=1
st z(t) ==z(t—-1)—-d@¢) +y@i), t=1,...,T
y(t) <b, t=1,...,T
z(t),y(t) >0, t=1,...,T.

Thus, f(d) is the optimal profit given the demand rates d. Computing
f(+) is efficient because the minimization problem to determine g(-),
(5.19), is simply a minimum-cost network-flow problem.

For notational convenience, let €; denote the t*" unit vector (the vector
with a 1 in the t*" component and a zero in all other components), and
let § denote the discretization increment (all components of the vector
d are assumed to be integral multiples of §).

The greedy algorithm is as follows.

STEP 0 (Imitialize): Initialize solution
d = (d(1),...,d(T)) = (0,...,0).
Calculate f(d) using (5.18).

STEP 1 (Compute marginal values): FORt=1,...,T,DO:
Compute f(d + de;) from (5.18).

STEP 2 (Find largest marginal increase): Chose the index t* for
which the marginal gain f(d + dey) — f(d) is largest.
IF f(d + dep) — f(d) <0, STOP (optimal solution found);
ELSE, update d:
d«d+ Jet

and GOTO STEP 1.
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In words, at each stage the algorithm simply adds an increment d of
demand to the period ¢ that yields the largest net gain f(d+de;) — f(d)
and stops when no period produces a positive net gain. Biller et al. [67]
report a test of this model and algorithm on data from the automobile
industry.

5.3.2 Stochastic Models

A stochastic version of the dynamic-pricing problem with replenish-
ment can also be formulated as follows: As in Section 5.2.2, let z(t)
denote the inventory at the end of period ¢ and T be the number of
periods in the horizon. (We consider an infinite-horizon, stationary ver-
sion of the problem in Section 5.3.2.2.) Because demand is random, it is
possible that demand in a period can exceed the available inventory. In
such cases, we assume that the firm can back-order demand, and this is
represented by a negative inventory z(t).

As before, we represent demand in each period as a random vari-
able D(t,p,&), of the form discussed in Section 7.3.4, with expectation
d(t,p) = E[D(t,p,&:)], with a unique inverse p(t,d). We assume that the
quantities and demand are continuous. Also, we assume that prices in
every period are unconstrained (with p > 0 the only requirement). Fi-
nally, we assume that the demand D(t, d, &) satisfies the regularity con-
dition in Assumption 7.6 and the convexity condition in Assumption 5.1.
The random revenue in each period is R(t,d,&:) = p(t,d)D(t,d,&).

The inventory after ordering is denoted y(t), and hence the quantity
ordered is y(t) — z(t). For notational convenience, we use y(t) as the
quantity-decision variable. We assume that we cannot dispose of items,
so y(t) > z(t).

There is a per-unit ordering cost ¢; in period ¢t and a convex cost
hi(z) on the ending inventory z in period ¢. This cost typically will
penalize both positive inventories (due to capital costs, storage costs,
and so on), and negative inventories (due to lost goodwill or penalties
for late delivery). For example, a function of the form

h(z) = axt + bz~
is commonly used, where ¥ = max{z,0}, = = max{—z,0}, a is the

cost of holding a unit, and b is the penalty cost for back-ordering a unit.

5.3.2.1 Finite-Horizon Problem

In the multi-period case, the optimization problem can then be for-
mulated as follows:

Vi(z) = y;ﬁlﬂ?&EOE [R(t,d, &) — ct(y — ) — he(y — D(t,d, &)
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+Ver1(y — D(t, d, &))]
= yzrg?jéo {r(t,d) — ct(y — 2) + Gena(y, d)}, (5.20)

where we define
GH—](yad) =F [‘/H-l(y - D(t’dv €t)) - h’t(y - D(t)d7 €t))] g

Using arguments that are essentially the same as those in Proposi-
tion 5.1, one can show the following:

PROPOSITION 5.3 (i) Gi(y,d) is jointly concave in y and d.
(ii) Vi(z) is concave in z.

(iii) B%Gt(y, d) is increasing in y.

(iv) %Gt(y, d) is increasing in d.

Proposition (5.3) (iii) and (iv) imply that G; is a supermodular func-
tion. (See Appendix C for a definition of the supermodularity property.)
These properties allow us to characterize the optimal pricing and order-
ing policy.

Specifically, let ¥°(¢) and d°(t) denote the values that maximize (5.20)
without the constraint y > z; that is, they solve

1?21%,)1(1 {T(t7d) - Ct(y - .’L') + Gt+1(y’ d)} .

Further, for simplicity assume an interior optimal solution for d and y
so that, by joint concavity of Gy, the necessary and sufficient conditions
for 4°(t) and d°(t) are then

J(t,d°(t) = —%Gm(y"(t),d"(t))

o = FCenlO.E0).
(If there are two or more sets of values satisfying these conditions, take
the pair (y°(t), —d°(t)) that is lexicographically the largest.)

It follows, then, that if z < y%(t), the optimal policy in period ¢ is to
order up to y°(t) and set the demand rate at d°(t) (that is, y* = y°(¢)
and d* = d%(t)), since the unconstrained optimal solution (d°(t),3°(t))
is feasible. However, if ¢ > yO(t), then one can show that it is optimal to
order nothing (for example, set y* = z) and choose a demand rate d* that
is higher than d®(t). Equivalently, set the price lower than p(t,d%(t)).
Moreover, the higher the inventory z, the higher the optimal rate d*
(equivalently, the lower the optimal price p(t,d*)).” The resulting policy

3To see this, we can argue informally as follows. Suppose that the optimal ¥* and d* satisfy
y* >2>y0%t) and d* < d%(t). Then since the constraint ¥ > , is not binding, these values
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is called a base-stock, posted-price policy. If inventory is less than the
base-stock level y°(t), then order up to this level, and price at the posted
price p(t,d°(t)). If inventory exceeds the optimal base-stock level y°(t),
then order nothing, and discount the price below the posted price, with
the discount being larger the more the inventory exceeds the optimal
base-stock level.

5.3.2.2 Infinite-Horizon, Stationary Problem

One can also extend this same analysis to an infinite-horizon setting.
We assume that all the parameters of the problem are time-invariant
and profits are discounted by a factor 0 < 8 < 1 in each period.*

The value function in this case is also time-homogenous. The formu-
lation is

V) = max {r(d)—ely—2)+ G D)},

where
G(ya d) =F [V(y - D(d’ g)) - h(y - D(dag))] .

In this infinite-horizon case, one can show that a time-invariant, base-
stock, posted-price policy is optimal. That is, there exist values 3°
and d° such that if z < ¢, it is optimal to order up to %° and price at
p% = p(d°). If > 4°, we order nothing, and the optimal demand rate d*
is greater than d° and increasing in z. Note that in this infinite-horizon
case, once we reach a point where z < ¢°, then in all remaining periods
we simply price at the posted price p® and order up to y%. In other words,
we use dynamic pricing only to clear inventory that is higher than the
optimal base stock y°. However, since such high inventory levels are only
transient, in the long run, the policy ends up using a constant price.

must satisfy the first-order condition,

d
J(t,d* = ——G *d*
(t.d*) —Gra(y*,d")
d
¢ = 5—G¢+1(y‘,d‘)-
Yy

But this contradicts the fact the (3°(t), —d®(t)) are the lexicographically largest pair of values
satisfying the first-order conditions. Therefore, we must have ¥* = z and d* > d9(t).
Since y* = =z, the fact that d* is increasing in  now follows from the fact that J(¢,d*) =
—%G:H(m,d*), that J{t,d) is decreasing in d, and that —E%Gt.,.l(m,d) is decreasing in y.
See Federgruen and Heching [183] for a complete proof of these properties.

“Similar results hold for the case of the average profit criteria by considering the discounted
problem with @ = 1. See Federgruen and Heching [183].
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5.3.2.3 Fixed Costs

Another variation of the problem is to include a fixed cost for ordering.
The finite-horizon version of this problem was studied by Chen and
Simchi-Levi [113]. In this case, the cost function becomes

Ki+cz ifz>0
ct(””)={0t Ce20

This results in a significantly more complex value function. However,
one can show, in certain cases, that properties of the optimal policy are
similar to those of classical inventory theory. For example, when the
demand function has additive uncertainty, then the optimal ordering
policy is of the (s¢,St) form, wherein we order only in period t if the
inventory z(t) drops below s¢, and in this case we order enough to restore
the inventory to the target level S; (order an amount S; — x). However,
this property does not hold for other stochastic-demand functions.’

Moreover, the optimal state-dependent price is quite a bit more com-
plex. For example, Chen and Simchi-Levi [113] show that, as a function
of the current inventory, the optimal price may not be decreasing in the
inventory level between ordering epochs. This is because while there is
an incentive to decrease price to reduce inventory, there is also an in-
centive to increase price to delay reordering and postpone incurring the
fixed-ordering cost.

5.4  Multiproduct, Multiresource Pricing

Multiproduct, multiresource—or network—versions of dynamic pric-
ing problems arise in many applications. Two fundamental factors typi-
cally link the pricing decisions for multiple products. First, demand for
products may be correlated. For example, when products are substitutes
or complements, the price charged for one product effects the demand for
other related products. Then, a firm jointly managing the pricing of a
family of such products must consider these cross-elasticity effects when
determining its optimal pricing policy. Second, products may be linked
by joint capacity constraints. For example, two products may require
the same resource, which is available in limited supply. Even if there are
no cross-elasticity effects between the two products, the pricing decision
for one product will need to account for the joint effect on demand for
the other product that uses the limited resource.

As in the case of capacity controls, most problems in real life are mul-
tiproduct problems, either because of cross-elasticity effects or because

A somewhat more complex variant of this (8,S) policy does hold more generally, however;
see Chen and Simchi-Levi [113].



216 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

of joint capacity constraints, or both. For example, a grocery store that
is pricing brands in a food category—say, salty snacks—needs to con-
sider the cross-elasticity effects of its pricing decision for all products in
the category. An increase in the price of a packet of potato chips will not
just cause a drop in demand for potato chips but will likely also increase
the demand for corn chips. At the same time, these products may oc-
cupy the same limited shelf space, so stocking more of one product may
require stocking less (or none) of other products.

We can model such situations using multiproduct-demand functions
and joint capacity constraints on resources. However, like the network
problems of capacity control, such formulations quickly become difficult
to analyze and solve, which is the reason that many commercial appli-
cations of dynamic-pricing models make the simplifying assumption of
unrelated products and independent demands and solve a collection of
single-product models as an approximation.

Yet in cases where cross-elasticity or resource-constraint effects are
strong—for example, when products are only slightly differentiated, cus-
tomers are very price-sensitive, or joint capacity constraints are tight—
then ignoring multiproduct effects can be severely suboptimal. In such
cases, we must solve a pricing problem incorporating these effects—or
at least approximating them in some fashion. In this section, we look as
such multiproduct, multiresource models and methods.

54.1 Deterministic Models Without
Replenishment

Under a deterministic-demand assumption, it is relatively straight-
forward to formulate a multiproduct, multiresource version of dynamic
pricing similar to those described in Section 5.2. There are n prod-
ucts, indexed by j, and m resources, indexed by ¢. There is a horizon
of T periods, with each period indexed by t. As in Section 7.3.2, let
d = (d1,...,dn) denote the demand rate for the n products and p(t, d)
denote the inverse-demand function in period ¢. We further assume
that the revenue-rate function r(¢,d) satisfies the regularity conditions
of Assumption 7.4.

Product j uses a quantity ag of resource i. The matrix A = {a;]
therefore describes the bill of materials for all n products. We assume
there are limited capacities C = (Cj,...,Cp,) of the m resources.

The dynamic-pricing problem can then be formulated as finding a
sequence of demand vectors d*(t) that maximizes the firm’s total revenue
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subject to the capacity constraints C:
T
max Zr(t,d(t)) (5.21)
t=1

T
st. Y Ad(t)<C
t=1

d@t)>0, t=1,...,T.

By Assumption 7.4, r(t,d) is concave in d, and therefore, the following
Kuhn-Tucker conditions are necessary and sufficient for characterizing
an optimal solution d*(¢) to (5.21):

J(t,d*#)) = ATx* (5.22a)
T
T(C-S Ad@®) = 0 (5.22b)
t=1
2> 0, (5.22¢)

where J(t,d) = Vg4r(t,d) is the marginal-value vector and #* is the op-
timal dual price on the joint-capacity constraints, having the usual inter-
pretation as the vector of marginal opportunity costs (marginal values)
for the m resources. Condition (5.22a) says that at the optimal sales
rate, the marginal revenue for each product j should equal the marginal
opportunity cost of the resources used by product j, or 7r‘TAj. Con-
dition (5.22b) says that the marginal opportunity cost of resource i can
be positive only if the corresponding capacity constraint for resource %
is binding. Finally, (5.22c) requires that the marginal opportunity costs
be nonnegative.

The nonlinear program (5.21) is relatively easy to solve numerically,
since the objective function is concave and the constraints are linear.
(See Bertsekas [58, 59] for specific techniques.)

Example 5.6 Consider the six-node airline network shown in Figure 5.6. Nodes 2
and 3 are “hub” nodes. (Leg seat capacities are as indicated in the figure.) For a
given path j on the network, the revenue function is time homogeneous and log-linear

dj(ps) = aze” /P71,

where 7, is interpreted as a reference price for itinerary j, a; is the demand rate at the
reference price, and €; is the magnitude of the elasticity of demand at the reference
price. Demand-function parameters for all O-D pairs are shown in Table 5.7 along
with the path (itinerary) used by each O-D pair.

Because the demand functions are time-homogeneous, optimal prices are constant
over time. The optimal O-D prices and demand are shown in the last two columns in
Table 5.7. The solution gives a total revenue of $661, 200 across all O-D pairs.
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Figure 5.6. A six-node, two-hub airline network.

5.4.2 Deterministic Models with Replenishment

We can formulate deterministic multiproduct models with replenish-
ment, analogous to those in Section 5.3 as follows:

T

max Zr-(t,d(t)) —h/!x(t) — ¢/ y(t) (5.23)
t=1

s.t. x(t) =x(t—-1)—-Ad@®) +y(), t=1,...,T
y(t)Sbt, t_]-, ,T
dit) >0, t=1,...,T
X(t),y(t) >0, t=1,...,T,

where x(t) is an m-vector of inventory levels at the end of period t, y(t)
is an m-vector of order quantities in period t, h; is a vector of holding
costs, ¢; is a vector of ordering costs, and by is a vector of capacity
constraints on the order quantities.

The introduction of an inventory-state variable makes this a more dif-
ficult problem to solve. However, in certain specialized cases the greedy
allocation algorithm of the type described in Section 5.3.1.2 can be used
to solve it exactly. (See Swann [497] for details.) This greedy algorithm
can also be used as a heuristic in more general cases.
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Table 5.7. Demand-function parameters, itineraries, and optimal solution for Exam-
ple 5.6.

Market Demand Function Optimal Solution
0 D a; €; ;_J 'j Path d; p;
1 2 300 1.0 220 1-2 135 $396.62
1 3 300 1.2 220 1-3 67 $495.86
1 4 300 2.0 400 1-2-4 165 $520.11
1 5 300 1.0 250 1-3-5 33 $752.04
1 6 300 0.8 200 1-6 100 $525.58
2 3 300 1.0 230 2-3 168 $364.28
2 4 300 0.9 200 2-4 143 $365.74
2 5 300 2.0 200 2-3-5 32 $423.79
2 6 300 1.0 200 2-4-6 92 $436.80
3 2 300 1.0 200 3-2 200 $281.76
3 4 300 2.0 230 3-4 131 $325.30
3 5 300 2.0 120 3-5 35 $249.51
3 6 300 2.0 150 3-4-6 14 $378.60
4 6 300 1.0 150 4-6 162 $243.30
5 2 300 1.0 200 5-2 100 $420.39
5 3 300 2.0 150 5-3 47 $289.90
5 4 300 1.0 160 5-3-4 21 $585.20
5 6 300 1.0 230 5-3-4-6 32 $748.50

5.4.3 Stochastic Models

Stochastic multiproduct pricing problems, like stochastic multiprod-
uct capacity-allocation problems, are quite difficult to solve exactly.
While in principle they can be formulated as dynamic programs, the
size of the state space is often prohibitively large. Therefore, approxi-
mations offer the only practical hope to solve such problems.

One natural approach for a stochastic multiproduct problem is to
approximate it by its deterministic equivalent problem, which as we’ve
seen in Section 5.2.2.3 are reasonably easy to solve. As in the case
of the single-product problem discussed in Section 5.2.2.3, one can in-
deed show that deterministic solutions are asymptotically optimal (in
the same fluid scaling of the problem) in certain cases. That is, sup-
pose the revenue in period t, R(t,d,§,), is random and we consider a
deterministic problem that replaces this random demand by its mean,
7(t,d) = E[R(t,d,,)]. Then the optimal deterministic price trajectory
from the resulting deterministic problem, when applied as an open-loop
control for the stochastic problem, produces an expected revenue that is
provably close to the optimal stochastic expected revenue.

For example, Gallego and van Ryzin [199] show that for a continu-
ous time version of the multiproduct pricing problem of Section 5.4.1
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with Poisson uncertainty, the solution to the equivalent deterministic
problem is asymptotically optimal for the stochastic problem as the ca-
pacities and time horizon are scaled up proportionally. The arguments
and formal definition of the scaling are similar to the asymptotic analysis
of network capacity control problems presented in Section 3.6.2 and 3.6
and are omitted. However, the result does provide some intuition into
the connection between these two problems.

5.4.4 Action-Space Reductions

One simplification that is useful for multiproduct dynamic pricing
problems is to express the problem in terms of resource-consumption
rates rather than the demand rates d. This yields an equivalent for-
mulation with often a greatly reduced dimensionality that can be much
easier to solve. The approach is due to Maglaras and Meissner [354].

To illustrate the main idea, consider the case of the deterministic
model (5.21) where there is only m = 1 resource but n > 1 products.
For example, this could be a situation similar to the traditional single-
resource problem of Chapter 2 but one in which we control the demand
for each product j, dj, by adjusting its price p;. The deterministic
problem (5.21) in this case is then

max Z (¢, d(t (5.24)

T n
s.t. ZZ
A0 20, t=1,.,T

To reduce the dimensionality of this problem, we express the problem in
terms of the aggregate-demand rate rather than the individual demand
rates d. To this end, define the aggregate-demand rate
R n
d=) dj,
j=1
and for a given d define the maximized revenue-rate function by

7(t,d) = max r(t,d) (5.25)
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That is, f(t,cf) is the instantaneous maximum revenue rate given that
the total demand rate (equivalently, the resource consumption rate) is
constrained to be d. It is easy to show that if r(¢,d) is jointly concave
in d, then #(t,d) will be concave in d.

Using these new variables, we can then formulate (5.24) as

max Z (5.26)
t=1
T ~

s.t dit) < C
t=1

dt)y>0 t=1,...,T.

Note that this is now a problem that is equivalent to a single-product
pricing problem of the same form as (5.1) with a scalar demand rate d
and revenue-ratefunctions #(t, cf) Once we solve for the optimal demand
rates (i"(t), we can then convert these into optimal vectors of demand
rates d*(t) by inserting d*(t) into the optimization problem (5.25). Thus,
the solution proceeds in two steps: first solve (5.26) to determine the
optimal aggregate sales rate, and then solve (5.25) at each time ¢ to
disaggregate this optimal aggregate rate into a optimal vector of sales
rates (equivalently prices) for each product.

This same action-space-reduction approach also works for stochastic
versions of this problem, of the types examined in Section 5.2.2. To illus-
trate, consider the dynamic program (5.11) for the continuous, additive-
uncertainty-demand model, but now suppose there are n products. The
n-product version of (5.11) yields the dynamic program

Vi() = max B R(t,d,&(t)) + Viqa(z — Y _ Dyi{t,dj, &) |, (5.27)
i=1

where Dj(t,d;,&;(t)) = d; + &;(t) is the random demand for product j.
To reduce the action space, we again define the aggregate-demand

rate d = E *_1d; and a maximized expected revenue rate using (5.25),
where now r(t d) = E[R(t,d,&;)]. Also, let

E0) =3 60)
=1

denote the aggregate noise term and

D(t,d,é(t)) = d +£(t)
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denote the aggregate (random) demand. When these transformed vari-
ables are substituted into the dynamic program (5.27), it reduces to the
following equivalent single-product formulation

V@) = max{f(t,d) + G d)},
d>0

where A o
Gi+1(2,d) = E[Vipa(z — D(t,d,&(2)))].

This has the same form as the single-product DP (5.11). Thus, the
single-resource, n-product dynamic-pricing problem is really no more
difficult to solve than the single-product problem.

This action-space reduction idea also extends to the general multi-
product (m > 1), multiresource problem (5.21) as well. In this case,
one can show that the problem can be reduced to one with only m de-
mand rates (one for each resource) rather than the original n rates (one
for each product). Namely, let d= (dl, .. .,cfm) define the maximized
revenue rate at each time ¢

A(t,d) = max r(t,d)
st. Ad=d
d>o0.

This maximized revenue-rate function and the new demand-rate vari-
ables d are then used to reformulate the general problem (5.21) as

~

7(t,d(t))

:
~
I

dit) < C

B

s.t.

T

1
t)>0t=1,...,T.

[« 7

What these reductions show, in essence, is that the complexity of the
multiproduct, multiresource dynamic-pricing problem is caused not by
the number of products n but by the number of resources m, since
ultimately m determines the dimensionality of both the state and action
spaces.
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5.5  Finite-Population Models and Price
Skimming

We next consider what effect a finite-population assumption has on an
optimal dynamic-pricing policy.® Recall that a finite-population model
assumes that we sample customers without replacement from a finite
number of potential customers. Thus, the history of demand (how many
customers have purchased, how much they paid, and so on) affects the
distribution of both the number and valuations of the remaining cus-
tomers.

Because the finite-population assumption is more complex, we focus
on deterministic models of this situation. However, we consider both a
myopic and strategic customer version of the problem.

5.5.1 Myopic Customers

Recall that a myopic customer is assumed to purchase the first time
the current price p(t) drops below his valuation v. Combined with the
finite-population assumption, this behavior can be exploited by the firm
to achieve price skimming—a version of classical second-degree price
discrimination.

Assume for simplicity that there is a finite population size N and
that customers in this population have valuations v that are uniformly
distributed on the interval [0,7]. As an approximation, we assume that
sales can occur in fractions, so the population can be regarded as con-
tinuous. The important point to note is that the fraction of customers
who purchased until time t leave the population of customers for the
remaining sale period.

As a result of the myopic-customer assumption, if the firm offers a
price p, N(1 — T/p), customers will buy. And by the finite-population
assumption, there will then be NU/p remaining customers, with valua-
tions uniformly distributed on the interval [0, p].

Now, consider a firm that sells a fixed capacity C of a product to this
population over T time-periods. The firm is free to set different prices
in each period. What is the optimal pricing strategy?

First, it is not hard to see that the optimal prices are decreasing over
time, since (by the myopic-customer assumption) the only customers
left at time ¢ are those with values less than the minimum price offered
in periods 1,...,t — 1. (See Section 8.3 for further motivations for a

6Section 8.3.4 covers the economic aspects of a durable-goods monopolist under a finite-
population, strategic-customer assumption. Here we concentrate on more operational results
of dynamic pricing.
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firm setting a decreasing schedule of prices.) Hence, the firm will sell
nothing if it posts a price in period ¢ that is higher than the minimum
price offered in the past. This observation, applied inductively, shows
that the optimal prices must decline over time. Moreover, note that if
p(t) < p(t —1) for all t, the revenue generated in period t is given by

PO (plt 1) - p(0)

where we define p(0) = T. This is because %(p(t — 1) — p(t)) is the
number of customers with valuations greater than p(t) but less than the
lowest previous price p(t — 1).

To see the effect the decreasing price schedule has on the optimal pric-
ing policy, assume for simplicity that C > N, so the capacity constraint
is never binding. In this case, the firm must solve

T
N

max E:EWUXPU—l)—pUD (5.28a)

t=1
st. p(t) <pt—-1), t=1,...,T (5.28Db)
p(0) =7, (5.28c¢)
p(t) = 0. (5.28d)
Note that the objective function is jointly concave in p(t),t =1,...,T.

It is not hard to see that the constraints (5.28b) are redundant, since the
objective function (5.28a) will penalize the use of a price p(t) > p(t —
1). Therefore, ignoring constraints (5.28b) and defining p(T' + 1) = 0,
the first-order conditions imply the optimal unconstrained solution must
satisfy

=Ptz -pl+1)

t=1,...,T.
p( 2 b ) ¥
One can easily verify that the solution
t
* =71 — ——— 2
P(©=v(1- 7 ) (5.29)

satisfies these first-order conditions. Since the optimization problem
(5.28a—d) is strictly concave and (5.29) satisfies the inequality constraints
p(t) < p(t — 1) for all ¢, it is in fact the unique optimal solution for
(5.28a—d). This solution is illustrated in Figure 5.7(i).

The optimal pricing strategy effectively exploits the myopic behavior
of customers to segment them into 7+1 groups based on their valuations,
and then price discriminates based on this segmentation. Specifically,
as shown in Figure 5.7, segment ¢ consists of those customer whose
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(i) No capacity constraints
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Figure 5.7. Optimal price-skimming solution for myopic customers: (i) no capacity
constraints, (ii) with capacity constraints.

valuations are in the range [p*(t),p*(t — 1)], and these segments pay a
declining price p*(t) given by (5.29). Segment T + 1 has values in the
range [0,7/(T + 1)] and is not served at all.

There are several interesting observations about this solution. First,
note we can write the optimal price in period ¢ as

. prt-1) @ t
Pt =3 +2(1 T+1)'

The first term on the right, p*(t — 1)/2, is simply the single-period
revenue-maximizing price, which follows from the fact that the remaining
customers in period t have values uniformly distributed on [0, p*(¢ — 1)).
Therefore, the optimal price in period ¢ is higher than the single-period
revenue-maximizing price for period ¢ (except in the last period ¢t = T,
where they are equal). Intuitively, this occurs because there is an addi-
tional benefit to the firm of raising its price in period ¢ in the multiperiod
setting; namely, it will have more customers to sell to in the future.

Second, note the price changes over time not because the distribution
of valuations changes over time—as in the infinite-population model of
demand—but because the firm seeks to price discriminate among the
finite population of customers. For example, in an equivalent infinite-
population model (essentially, the model of Section 5.2.1 with a linear-
demand function), the distribution of values of customers is unaffected
by past demand, and hence the distribution would still be uniform over
[0,7] in each period. In this case, the optimal price to charge in each
period would be a constant 7/2 rather than the declining price (5.29).
Therefore, a finite population of customers creates an incentive to offer
dynamically decreasing prices to achieve price discrimination, an incen-
tive that is not present in infinite-population models.



226 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Finally, note that if the number of periods T increases, the firm’s
revenues increase because one can show (after some algebra) that the
optimal total revenue for T periods is

T
SrOFEO -0 =F (7)-

Indeed, as T tends to infinity, the firm achieves perfect price discrimina-
tion and captures the entire consumer surplus Nv/2 = fo (N/v)dv; each
customer ends up paying a price arbitrarily close to his valuation. In
particular, a continuous-time model of this problem can achieve perfect
price discrimination because the firm can continuously lower prices from
v down to zero over the interval [0, 7). A number dp(N/T) of customers
with values [p, p + dp] will buy when the price is p, so the firm achieves
a revenue of [y p(N/T)dp = NT/2, which is the entire consumer surplus.

The introduction of a binding capacity constraint does little to change
this basic story. Indeed, the solution (5.29) will not be feasible if C <
NT/(T +1). However, in this case, one can show that the optimal price
is simply modified so that only those customers above a lower limit v

are segmented, where
v -0 (7751) =

The optimal price in this case becomes

t
* — = _ 1—
pt)=u+ (@ y)( T+1>
and customers with valuations less than v + (7 — v)/(T + 1) are not
served. This solution is illustrated in Figure 5.7(ii).

5.5.2 Strategic Customers

One might question why customers would behave myopically when
faced with a price-skimming strategy. Indeed, knowing that prices will
decline over time, rational customers could do better (increase their net
utility) by deviating from myopic behavior and delaying purchase until
the price is much lower than their valuation. Such behavior is quite
plausible and is a valid criticism of the myopic-customer model, but it
complicates the analysis of the firm’s optimal-pricing policy considerably.
Most significantly, it turns the pricing problem into a game between the
firm and its customers, in which we must analyze the equilibrium using
game-theoretic tools.

Strategic customer behavior is, in fact, a central feature of the the-
ory of optimal mechanism design discussed in Chapter 6 on auctions.
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Both auction and list-price mechanisms are analyzed in Chapter 6, and
we provide much of the analysis and insight about pricing with strate-
gic customer behavior there (see also Section 8.3.4). Here we focus on
the more limited topic of the effect of strategic customers on the price-
skimming strategy alone. Further, to keep things simple, throughout
this section we consider only the case where the firm has no capacity
constraint (C > N).

To proceed, one first has to make assumptions about whether the firm
can credibly commit to a schedule of prices over time or whether the firm
must follow a subgame-perfect equilibrium-pricing strategy. (See Appen-
dix F for a discussion of subgame perfection.) In our case, requiring a
subgame-perfect equilibrium means that the strategy for the firm at each
time ¢ has to be an equilibrium for the residual revenue-maximization
game over the horizon £,t+1,...,T, given whatever state the firm and
customers were in period .

For example, if the firm can commit to a price schedule, then a rational
customer will simply look at the schedule of prices and (assuming no dis-
counting of utility) decide to purchase in the period with the lowest price,
and only customers with valuations above this lowest price will decide to
purchase. So effectively, it is only the lowest price among the T periods
that matters to customers. Given this fact (and ignoring capacity con-
straints), the firm will then set this minimum price as the single-period
revenue-maximizing price, which, in the case where customer valuations
are uniformly distributed on {0,], is just /2. The firm will then set
arbitrary but higher prices in the other periods. Which period the firm
chooses for the minimum price doesn’t matter unless revenues are dis-
counted, in which case the firm would prefer collecting revenues sooner
rather than later and would choose period 1. The total revenue the firm
receives is then N©2/4, which is just the product of the price 7/2 and the
number of customers willing to pay that price, NT/2. One can formalize
this reasoning and show that this is indeed the equilibrium strategy in
the case where the firm has to commit to a price schedule.

Note that the fact that customers are rational has eliminated the
ability of the firm to price discriminate; the firm is forced to offer a
single uniform price to all customers. Moreover, the firm’s revenue is
strictly worse under this model. This is to be expected, the firm ought
to do worse when customers are “smarter.”

However, the single-period strategy outlined above is not always
subgame-perfect. To see why, suppose this lowest price T/2 occurs in
period 1. Then in period 2, there will be a population of customers
with values less than /2 who have not purchased. If the firm has any
remaining supply after period ¢, it would rather sell the remaining stock
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at some positive price than let it go unsold. Thus, it has an incentive to
lower the price in period 2 to capture some of the remaining customers.
However, rational customers realize the firm faces this temptation after
period 1 and, anticipating the price drop, do not purchase in period
1, so offering the lowest price in period 1 cannot be a subgame-perfect
equilibrium.

Besanko and Winston [47] analyze the subgame-perfect pricing strat-
egy. The equilibrium is for the firm to lower prices over time, similar to
the price-skimming strategy of Section 5.5.1. In the case where revenues
are not discounted, this equilibrium results in the firm setting a declin-
ing sequence of prices, where the price in the last period T is simply
the single-period optimal price 7/2; all customers buy only in the last
period. This case is essentially equivalent to the case where the firm can
commit to a schedule of prices, with the exception that the firm is forced
to offer the lowest price only in the last period.

The situation is somewhat more interesting if revenues and customer
utility are discounted at the same rate. In this case, the subgame-perfect
equilibrium has customers with high values buying in the early periods
and those with lower values buying in later periods, again, as in the price
skimming case of Section 5.5.1. However, unlike the price-skimming
case, the equilibrium price in each period is lower than the single-period
revenue-maximizing price for the customers remaining in that period.
In particular, in period 1 the equilibrium price is less than 7/2, and
the equilibrium price declines in subsequent periods. Thus, the firm is
strictly worse off than when it can commit to a price schedule. This is
because when the firm can commit to its price schedule, it can force all
customers to purchase in period 1 by simply offering very high prices
in periods ¢ > 1 while setting a price of exactly ¥/2 in period 1. All
customers will then buy in period 1 at a price of 7/2.

Besanko and Winston [47] show that with strategic customers, the
firm is always better off with fewer periods; that is, the firm’s equilib-
rium revenue is decreasing in the number of periods. This is because the
inability of the firm to commit to prices in later periods hurts it, and
the more periods, the more often the firm falls victim to the temptation
to lower prices. That is, it discounts early and often. This is to be con-
trasted with the case of myopic customers, where the firm’s revenues are
increasing in the number of periods. Thus, although the strategy looks
like price skimming, rational customers create a qualitatively different
situation for the firm than do myopic customers.
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5.6 Promotions Optimization

In this section we look at normative models for retail and trade pro-
motions. We first discuss promotions in general and how they differ from
the sorts of dynamic-pricing problems considered thus far. We then look
at two specific models of promotion optimization.

5.6.1 An Overview of Promotions

As mentioned in this chapter’s introduction, promotions are short-run,
temporary price changes that are frequently applied to replenishable
and consumable goods (such as CPG products). Promotions are run
either by the manufacturer (trade promotions) or by retailers (retail
promotions or consumer promotions). Manufacturer may also give a
discount directly to the end customer in the form of coupons and rebates.
While manufacturers are interested in increasing sales or profits for their
brand, retailers are interested in overall sales or profits for an entire
product category.

A promotion generally increases sales to both the retailer and manu-
facturer, but there are a variety of factors at work behind the increase.
Customers may increase their consumption of the product due to two
fundamental effects: higher household inventories lead to fewer stock-
outs and therefore an increase in consumption; and higher inventories
give customers greater flexibility in consuming the product because they
don’t have to worry about replacing the inventory at higher prices. For
instance, Wansink and Deshpande [553] and Chandon and Wansink [104]
show that larger household inventory causes faster usage rates if product-
usage occasions are flexible (snack foods), products need refrigeration,
or products occupy a prominent place in the pantry (for empirical evi-
dence of this based on scanner data, see Ailawadi and Neslin [5]). Some
other reasons promotions cause an increase in demand include customers
switching from nondiscounted brands to the discounted brands and cus-
tomers (or retailers for trade deals) stockpiling to take advantage of the
low price (forward buying).

Not surprisingly a dominating factor behind the demand increase is
the type of product. For example, products such as yogurt and potato
chips tend to see an increase because of increased consumption, while
for products such as tomato ketchup, diapers, and toilet paper, the sales
increase is primarily because of brand switching or stockpiling.

Promotions, in the framework of RM, can be thought of as either
(1) a manufacturer using price to dispose excess inventory, (2) a man-
ufacturer trying to gain market share to induce customers to try out
its products, (3) retailers experimenting with price to find optimal price
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points, (4) separating price-sensitive customers, who are willing to use
coupons or who wait for deals, (5) retailers trying to increase store traffic,
as customers once inside the store are likely to purchase other, nonpro-
motional items, or (6) a tactic for store brands or small firms to compete
against the large advertising budgets of the established brands.

5.6.1.1 Types of Promotions

As mentioned, the main dichotomy in promotions is between retail
promotions and trade promotions. Many promotional events are in fact
closely coordinated between the manufacturer and the retailer. For in-
stance, if the retailer runs an advertised promotion, the manufacturer
may agree to bear a share of the advertising cost, or the trade deal may
involve running an in-store display supplied by the manufacturer.

Retail promotions can be advertised or unadvertised (in-store promo-
tions), often coordinated with temporary in-store displays. The price
promotion part may take the form of a simple percentage off, coupons,
or a “multibuy” (discount for multiple items packaged together), or an
extra free (such as three for the price of two; or 15% more free). The
latter two types are usually manufacturer-driven, as packaging may have
to be changed.

Trade promotions traditionally are in the form of off-invoice as a per-
centage off the amount ordered during the promotion period. Surpris-
ingly, many off-invoice promotions do not require the retailers pass the
discount on to the customer, so they may just purchase more during the
promotion period and sell it at regular price. The manufacturer would
simply see a drop in orders once the promotion period is over.

More effective for the manufacturer is the use of mail-in coupons (di-
rect discount to the final customer), or scan-back deals, in which the
manufacturer reimburses retailers a certain amount for each unit sold,
so the discount is on units sold to end customers rather than on units
purchased by the retailer. Scan-back deals eliminate forward buying by
the retailer and aligns the retailer’s objectives with the manufacturer’s.

5.6.1.2  Empirical Findings

The promotions literature is rich in empirical work—based mostly on
scanner POS data—that analyzes the effects of promotions on sales and
profits in different categories. The common trends that emerge from this
research, summarized by Blattberg, Briesch, and Fox [74] as empirical
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Table 5.8. Empirical generalizations on promotions.®

Finding Supporting Literature
Woodside and Waddle [580]
Moriarty [390]

Blattberg and Wisniewski [77]
Bolton [84]

Bemmaor and Mouchoux [45]
Vilcassim and Jain [535]
Lattin and Bucklin [329]
Kalwani et al. [281]

Kalwani and Yim [282]
Mayhew and Winer [367]
Bolton [84]

Raju [434]

1. Temporary retail price reductions
substantially increase sales.

2. Higher-market-share brands are less
deal elastic.

3. The frequency of the deals changes
the consumer reference price.
4. The greater the frequency of sales,

the lower the height of the deal spike.

5. Cross-promotional effects are asymmetric,
and promoting higher-quality brands

Blattberg and Wisniewski [77, 78],
Krishnamurthi and Raj (315, 315]

impacts weaker brands disproportionately.

Retailers pass-through less than
100% of trade deals.

Display and feature advertising
have strong effects on item sales.

Advertised promotions can result

Cooper [128], Walters [549]

Chevalier and Curhan [114],
Curhan and Kopp [138],
Walters [549],

Blattberg and Neslin [76]
Woodside and Waddle [580],
Blattberg and Wisniewski [77],
Kumar and Leone [316]
Walters and Rinne [547],

in increased store traffic. Kumar and Leone [316],
Walters and MacKenzie [548],
Grover and Srinivasan [225]
Walters and Rinne [547],
Walters and MacKenzie [546],
Mulhern [396], Walters [549],
Mulhern and Leone [395]

9. Promotions affect sales in
complementary and competitive
categories.

% Source: Blattberg, Briesch and Fox [74].

generalizations,” are valuable both for the practitioner as well as the
academic researcher. Table 5.8 gives the main findings. In addition to
the findings in Table 5.8, Blattberg, Briesch, and Fox [74] report some
conflicting findings with respect to the following four questions:

7Blattberg, Briesch and Fox [74] define an empirical generalization as follows: (1) the topic
being studied is well-defined; (2) there are at least three articles by at least three different
authors in which empirical research has been conducted in the specific area, and (3) the
empirical evidence is consistent.
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m Does the majority of promotional volume come from switchers rather
than from customers increasing their consumption or category volume
growth? The most likely explanation for the variation in the findings
here may be the differences in the nature of the products; one can well
imagine promotions causing consumption increase for yogurt, but not
say, for toilet paper or ketchup.

s Do promotional elasticities exceed long-run price elasticities? That
is, because of the temporary nature of a promotion, does it cause
a greater increase in demand than if the firm were to permanently
lower its price?

m [s the trough after the deal due to customers’ accelerating their pur-
chases and stockpiling, creating a drop in the normal sales after a
promotion? Somewhat surprisingly, there is no consensus whether
this happens.

® [s there is a negative long-term effect to promotions? Are promo-
tions detrimental to long-term brand equity? The findings have been
mixed, with some studies discovering a long-term negative effect, and
some finding both a positive and negative impact due to promotions.

5.6.2 Retailer Promotions

We next examine two normative models of promotion optimization. In
the first model, due to Greenleaf [221], a monopolist retailer is assumed
to maximize profits from promoting a particular brand. (A “brand” is
a particular-size of a given product.) Customers are assume to have
a reference price (see Appendix E), assumed to be an exponentially
smoothed average of past prices, as follows:

plt) = ap(t = 1) + (1 — a)p(t — 1) + &, (5.30)

where 0 < a < 1 is the smoothing parameter,®

random variable representing the error term.
Demand is assumed to be composed of two separable factors, a base
demand ¢(p(t)) and a reference price factor g(p(t),p(t)), as follows:

and & is a O-centered

(1) = a(p(t) + 9(a(2),p(1), (5.31)
where o
(ot p(e) = { X0O ~PO) HPO A (s

8Based on scanner data, Greenleaf [221] finds a = 0.925 for peanut butter, and Hardie,
Johnson, and Fader [237] find a = 0.83 for orange juice. It is also common in promotions
models to assume a priori o = Q—that is, the reference price is the previous period’s price.
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The parameters d,7y > 0 model customers’ asymmetric price sensitiv-
ity to loss (p(t) < p(t)) or gain (f(t) > p(t)) perception: if customers
value gains more than losses, § > <, and if they are loss averse, § < +.
(Again, see Appendix E for a discussion of consumer-choice theory based
on valuations of losses and gains.)

The reference-price dynamics given by (5.30) capture the effect of
current promotions on future profits; frequent and deep promotions will
reduce customers’ reference price p(t) for the brand, and as a result
they will start perceiving the normal price as a loss. So even though
promotions generate short-run profits, it is in the retailer’s long-run
interest not to run promotions too frequently.

The retailer is assumed to maximize its discounted profits over an
infinite planning horizon. The retailer’s discount factoris 3, 0 < 8 < 1,
and the marginal cost of production is ¢. This results in the following
dynamic program:

o0
max Y B((p(t) — c)d(t)], (5.33)
p(t) t=0
with a state evolution equation given by (5.30).

Greenleaf [221], using simulations, shows that the optimal policy for
the retailer obtained by solving (5.33) can be cyclical, oscillating be-
tween periods of high prices and periods of low prices. Kopalle, Rao,
and Assuncdo [310], using analytical and numerical techniques, derive a
number of interesting structural properties of (5.33). Specifically, they
show that if the entire customer population is loss averse (§ < ), a
constant-price policy is optimal. On the other hand, if customers value
gains more than losses (§ > =), then a cyclical policy of hi-lo pricing
is optimal for the retailer. In other words, the asymmetry in customer
valuations for gains and losses can be sufficient motivation to run promo-
tions. Moreover, they numerically show for this case that the difference
between the high and low price increases as the gain coefficient § in-
creases for a fixed level of loss coefficient v, and the high price increases
as the memory parameter « in (5.30) decreases.

As we mentioned, retailers are more interested in category profits than
in profits from promoting a particular brand. For a retailer managing n
brands in a category, the objective therefore is to manage the n prices
over time, p(t) = (p1(t),...,pn(t)). This requires solving the following
optimization problem:

max iiﬁt[fj(r)(t))ﬂm(t)—c)gj(ﬁj(t),pj(t))], (5.34)

p(t))t=1121" t=1 _7=1
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where f;(p(t)) is an aggregate profit function, dependent on the prices of
all the brands but excluding reference price effects, which are captured
by the second term, and g;(p;(t),p;(t)) is of the same form as (5.32).
The state as before is the reference price, and the state equation is

P(t) = ap(t — 1) + (1 — a)p(t).

Kopalle, Rao, and Assuncao [310] analyze (5.34) and show once again
that when &; > «; for all brands, a cyclical pricing policy of hi-lo pricing
is optimal, and moreover, the cycles are in phase—that is, all the brands
are priced high, or all the brands are discounted together. The reason
is that hi-lo prices in phase minimize the cross-price effect, at the same
time allowing the retailer to take advantage of the reference-price effect.

5.6.3 Trade-Promotion Models

As we discussed, a manufacturer offers rebates to retailers to promote
its own brand. The cooperation might take many forms (such as joint
advertising and store displays), and the contracts are varied (such as
scan-backs and sale guarantees).

On the one hand, models for optimizing the manufacturer’s promo-
tions tend to be simpler than the retailer’s problem, as the manufacturer
is concerned with only one brand. But on the other hand, one has to
model retailer pass-thru behavior. (Recall that pass-thru is the per-
centage of the discount the retailer passes on to the end consumer.)
This requires modeling the vertical competition between manufacturer
and retailer. In contrast to the previous section, however, one typically
ignores reference-price effects because the discount is offered to the re-
tailer rather than to the end customers.

The most widely used model for representing demand as a function
of deal price and displays is the SCAN*PRO model of Section 9.6.4.
Kopalle, Mela, and Marsh [309] analyze a Stackelberg game between a
manufacturer and retailer, where the demand is given by the SCAN*PRO
functional form. Silva-Russo, Bucklin, and Morrison [470] give a sim-
pler mixed integer programming formulation (see also Tellis and Zufry-
den [507]), where the manufacturer assumes that retailers are passive,
but they model retailers’ pass-thru percentages. They report an imple-
mentation of the model at a large CPG manufacturer. The formulation
does not by itself give insight into the optimal structure or policies for
the manufacturer, but it is reasonably practical and captures the main
concerns of the manufacturer in the formulation of its constraints.
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5.7 Notes and Sources

The book by Nagle [400] provides a good general-management
overview of pricing decisions. Elmaghraby and Keskinocak [177] pro-
vide a nice current survey on research in the area of dynamic pricing.
As for the connection between pricing- and capacity-allocation decisions,
see Walczak and Brumelle [543].

Smith and Achabal [480] study a continuous-time version of the prob-
lem with inventory-depletion effect as in Section 5.2.1.5. They also study
the problem of selecting the optimal initial inventory and report sum-
mary results of tests of the model at several major retailers. Heching,
Gallego, and van Ryzin [247] provide revenue estimates based on a re-
gression test of this same type of deterministic model on data from an
apparel retailer.

Gallego and van Ryzin [198] analyzed a continuous-time, time-
homogeneous version of the stochastic model of Section 5.2.2, providing
monotonicity properties of the optimal price, an exact solution in the
exponential demand case, and proving the asymptotic optimality of the
deterministic policy as in Section 5.2.2.3. Bitran and Mondschein [73]
analyze a discrete-time model of the problem essentially the same as
that presented in Section 5.2.2 and test in on apparel retail data. Zhao
and Zheng [589] analyze the continuous-time model with a time-varying
demand function and provide an alternative proof of monotonicity of
the marginal values AV;(z); they also provide results on the monotonic-
ity of optimal prices over time. See also Kincaid and Darling [304] and
Stadje [484]. Das Varmand and Vettas [145] analyze the problem of
selling a finite supply over an infinite horizon with discounted revenues,
where the discounting provides an incentive to sell items sooner rather
than later and there is no hard deadline on the sales season.

Stochastic models with discrete price changes are analyzed in the
continuous-time case in a series of papers by Feng and Gallego [185, 186]
and Feng and Xiao [188, 189]. The problems differ in terms of whether
there are two prices or more than two prices, whether the price changes
are reversible or one-way changes. Feng and Gallego [186] extend the
analysis also to the interesting case where demand is Markovian and may
depend on the current inventory level—for example, as in the classical
Bass model of new-product diffusion. The notion of the maximum con-
cave envelope of prices is due to Feng and Xiao [188]. See also You [586]
for a discrete-time analysis of the problem.

There is an extensive literature on production-pricing problems.
Eliashberg and Steinberg [175] provide of review of joint pricing and
production models. Single-period, convex-cost problems under demand
uncertainty are analyzed by Karlin and Carr [293], Mills [386], and the
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early paper of Whitin [564]. The literature on single-period pricing un-
der demand uncertainty (the price-dependent newsvendor problem) is
surveyed by Petruzzi and Dada [417]. Multiperiod, convex cost models
are analyzed by Hempenius [249], Thowsen [509], and Zabel [509].

Rajan, Rakesh, and Steinberg [433] analyze a deterministic model
of dynamic pricing within an inventory replenishment cycle, where the
motivation for dynamic pricing is the deterioration in the product as well
as its declining market value with age (for example, pricing perishable
foods).

The optimality of the greedy allocation algorithm for the determinis-
tic production-pricing problem with capacity constraints was shown by
Chann, Simchi-Levi, and Swann [105]. The optimality of the base-stock,
posted-price policy discussed in Section 5.3.2 was proved by Federgruen
and Heching [183]. The fixed-cost version of this problem was recently
analyzed by Chen and Simchi-Levi [113].

Multiproduct, multiresource dynamic-pricing problems were analyzed
in Gallego and van Ryzin [199], including bounds on the relationship
between the stochastic and deterministic versions of the problem. The
action-space-reduction approach is a recent result due to Maglaras and
Meissner [354]. A related network pricing we have omitted is congestion
pricing for communications service; see for example Pashalidis [413].

Stokey [490] analyzes a model of intertemporal price discrimina-
tion similar to that presented in Section 5.5.1. See also Kalish [279].
Stokey [491] analyzes a price-skimming model with rational customers
under the assumption that the firm can commit to a price schedule. The
material in Section 5.5.2 on the subgame-perfect pricing equilibrium for
a firm faced with strategic customers is from Besanko and Winston [47].

The artificial-intelligence community also has recently become inter-
ested in dynamic pricing, using autonomous software agents. The ap-
proach is simulation based, with experiments using various strategies
for the players. Although relevant, the approach is beyond the scope of
this book, though the interested reader can refer to Morris, Ree, and
Maes [393] and Morris and Maes [392].

The literature on promotions is rich in empirical work, which we
have summarized, somewhat tersely, in Table 5.8. The material in
Section 5.6.1.2 is entirely from Blattberg, Briesch, and Fox [74]. For
more empirical generalization articles, see Bell, Chiang, and Padmanab-
han [34] and Sethuraman and Srinivasan [458].

The standard reference on promotions is the book by Blattberg and
Neslin [76]. There is a large body of work that tries to understand
the interactions between the retailer and the manufacturer using game
theory, which we do not have the opportunity to cover here—see Lal and
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Villas-Boas [322, 323], Lal [325, 324], Rao, Arjuni, and Murthi [436],
Gerstner and Hess [211] and Bell, Iyer, and Padmanabhan [35].

APPENDIX 5.A: Proof of Monotonicity Results
Proof of Proposition 5.1

Since there are multiple parts, we restate the proposition:
If Assumptions 5.1 and 5.2 hold, then for all t:

(i) Ge(z,d) is jointly concave in x and d.

(ii) Vi(z) is concave in z.

(iii) &Gi(x,d) is increasing in x and decreasing in d.
We first need a preliminary result:

LEMMA 5-5.A.1 If Assumption 5.2 holds, then the truncated revenue function
r+(t,d, ) is jointly concave in x and d on the for z > 0 and d € Qa(t).

Proof
By definition,

rt(t,d, =) = p(t,d)E [min{D(¢,d, &), z}] = E [min{p(t,d)D(t,d, &), p(t,d)x}].

By Assumption 5.2, the term p(t,d)D(t,d, &) is concave in d, and p(t,d) is concave
as well. Also note if ¢ > 0, then p(t,d)x will also be jointly concave in  and d. This
follows because the Hessian

zp”(t,d) p'(t,d)
p'(t,d) 0

is negative definite, since both zp”(t,d) < 0 and the determinant —(p’(¢,d))? < 0.
Therefore, min{p(t, d)D(t,d, &), p(t, d)x} is jointly concave because it is the minimum
of two concave functions. Finally, taking expectations preserves concavity, hence
r*(t,d,z) is jointly concave. QED

We are now ready to prove Proposition 5.1. Parts (i) and (ii) are related by
induction. Indeed, we first show that if Gyq1(2,d) is jointly concave in z,d and
Assumptions 5.2 holds (so by Lemma 5-5.A.1 =*(t,d, ) is jointly concave in d and
x), then Vi(x) is concave in . To do so, consider any two values nonnegative values
z; and z2 and any real a satisfying 0 € a £ 1. For notational convenience define the
convex combination Z = az1 + (1 —a)x2, and let di denote the value that maximizes
r(t, d) + Gey1 (i, d), for i = 1,2 and define d = ad} + (1 — a)d3. Then

Vi(2)

dé‘f‘ﬁ’&){’(t’ d) + Gey1(2,d)}

rt (t, (i, .’E) + Gt+1(1_:, ti)
a(T+(t,d;,$1) + GH.](.’B],d;)) + (1 - a)(r+(t, d;7z2) + Gt+1($2, d;))
aVi(z1) + (1 — a)Vi(z2),

vV IV

where the last inequality follows from the joint concavity of 7+ and Ge+1. So Ve(z)
is concave in z provided r is concave (Assumption 7.2), and G+ is jointly concave.

Likewise, we show that Gy41 is jointly concave if Viq1(z) is concave and Assump-
tion 5.1 holds. To see this, consider any four nonnegative i,z2,d1,d2 and any real
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« satisfying 0 < a < 1. Define Z = az1 + (1 — a)z2 and d=od + (1 — a)da. Then
E[V!+1(57 - D(t) d-yét)]

E[‘/H.l(j - (aD(t, dl,ft) + (1 - a)D(trd21 E!))]

ElaVis1(z1 — D(t,d1,&)) + (1 — &) Vi (22 — D(t, d2,&))]
aGer1(z1,d1) + (1 — )Gy (22, d2),

G!+1(5:1 )

I

v v

1l

where the first inequality follows from Assumption 3.1, V;4+1(z) is increasing in z, and
the second inequality follows from the fact that Vi41(x) in concave.

Parts (i) and (ii) of Proposition 5.1 now follow from these two results using an
induction argument and the fact that for all z, Vo(z) = 0, which is concave.

Finally, to show part (iii), note that the fact that %Gt(m,d) is decreasing in d
follows from the concavity of G; in d (part (i)). To show it is increasing in z, take a
nonnegative @ and d note that the difference

V¢+1(.’1: - D(t,d + a,ﬁt)) - ‘/t+1(w - D(t)d1 E‘))

is oppositive since D(t,d + a,&) > D(t,d,&) by Assumption 5.1 and therefore is
increasing in @ by the concavity of Vi+1(+). Therefore, taking expectations above we
then have that the difference

Geyi(z,d+ a) ~ Guyi(z, d)

is increasing in = as well. Since
7] .1
aGt(&‘,d) = lim =(Ger1 (@, d + o) — Gera(, d)),

it therefore follows that ZG¢(z,d) is increasing in 2. QED

Proof of Proposition 5.2

The proof here is essentially identical to Proposition 2-2.A.4 result for the discrete-
choice single-resource model in Appendix 2.A.

We first show that AVi(z) is decreasing in z. The proof is by induction on ¢. First,
this is trivially true for t = T 4+ 1 by the boundary conditions Vz41{z) = 0 for all .
Assume it is true for period ¢ + 1, and consider period ¢. Let d;i denote the optimal
solution to (5.12) for inventory level = + ¢; that is, it is an optimal solution in the
recursion

Vi(e) = max {r(t,d) - dAVis (2 + i)]} + Verr (<)
deQq(t)

and note that since AVi(z +1) = Vi(z + 1) — Vi(z + 7 — 1), we can write
AVi(z+2) - AVi(z+1) = AVij(z+2) - AVia(z +1)
+(r(t,d3) — d3AVi41 (z + 2))
—(r(t,d}) ~ di AVis (@ + 1)
—(r(t,dy) — diAViga(z + 1))
+(r(t, dy) — dg AV, (2))
From the optimality of d}, the following inequalities hold:

r(t,di) ~ diAVeri(z + 1) > r(t,d3) — d3AVipa(z + 1)
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and
r(t,d}) — diAVepi(z + 1) > r(t,dp) — doAVigi(z + 1).

Substituting into (5.A.0) we obtain

AVi(z+2) - AVi(z+1) < AViua(z+2) - AVia(z +1)
Hr(t,d5) — d3AVia(z + 2))
~(r(t, ) — d3AVinr(z + 1))
—(r(t,dg) — dgAVisa1(z + 1))
+(r(t,dy) — dpAViy1(2)).

Rearranging and canceling terms yields

AVi(z+2) - AVi(z+1) £ (1 -d3)(AViti(z +2) — AViqa(z + 1))
+d5 (AViga(z + 1) — AV (2)).
By induction, AViq1(z + 2) -~ AViqu(z + 1) <0 and AVeqi(z + 1) — AVeqa(z) €0
and since d values are at most one (expected demand in a period is at most one in the
discrete Poisson case), 1—d3 > 0 and dg > 0. Therefore, AVy(z+2)— AV (z+1) < 0.

(Note the concavity of r(+) is not required for this part of the proof.)
To show monotonicity in ¢, using the same notation note that

AVi(z +1) — AVipa(z + 1) (5.A.1)
(r(t,d}) — A1 AViga (z + 1)) — (r(t, d) — doAVis1 (z))

(r(tyd}) — d} AVis1 (2 + 1)) — (r(t, d3) — djAVis: (z +1))

(r(t,d}) — r(t,dg)) = AVit1(z + 1)(d] — dj), (5.A.2)

A%

where the first inequality above follows by the fact that AViyr(x + 1) < AVit1(z).
Now by the concavity of (t,d) we have that

(r(t,7) = 7(t,d5)) < pr(t 1) — ).

But the first-order conditions imply E%T(t,df) = AVi41(z + 1), so substituting above
we have that
r(t,dy) — r(t,dg) > AVisa(z + 1)(dy = dp).

Substituting into (5.A.2) implies AVi(z + 1) — AViqa(z +1) 2 0. QED



